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Preface

These notes comprise select tutorials on phase field modelling, classical density functional theory and
non-equilibrium phase transformations. They provide supplementary reading for the introductory
text Phase Field Methods in Materials Science and Engineering in [26] by N. Provatas and K. Elder,
and that text will be referenced frequently. Reference [26] takes a somewhat practical approach for
deriving phase field theories. The present notes (most of which will end up in the next edition the
aforementioned text) introduce select topics in phase field theory at a more advanced level. The level is
aimed at graduate students familiar with or following a classical condensed matter physics curriculum.

The first chapter of these notes is a review of thermodynamic potentials and their applications
to phase coexistence in multi-component materials. This topic is crucial for analyzing the mean
field properties of phase field models and determining their phase diagrams 1. Chapters 2-4 examine
classical particle growth kinetics, from nucleation to particle growth and coarsening, and interface
instabilities that are quintessential to pattern formation in microstructure evolution. The fifth chap-
ter studies two topics in mean field theory that are not usually covered in traditional treatments of
the topic. The first topic derives a mean field model for a solid that incorporates a vacancy order
parameter alongside the density and strain order parameters typically used to describe solids. The
second topic derives the classic Ginzburg-Landau “Model A” free energy directly from the partition
function. Chapter 6 derives mesoscale conservations laws for mass, momentum and energy from mi-
croscopic principles. Combining these with the appropriate fluxes derived from entropy dissipation
yields dynamical equations that are the basis for the evolution of density, displacement and temper-
ature in solids. These compliment the dynamical equations derived in Ref. [26] for order parameters
describing phase changes. Combining an an order parameter with hydrodynamics modes can then
yield a complete set of equations for the evolution of mass, heat, and strain during microstructure for-
mation, which is the basis of many papers on phase transformations in solid state materials. Chapter
7 moves on on to review the statistical mechanics of inhomogeneous fluids, from which is derived a
classical density functional theory (CDFT) of solidification. In this formalism, the emergence of an
ordered phase (e.g. crystal) is seen as the localization of order in the fluid phase. Chapter 8 studies
a simplification of CDFT that give rise to a class of phase field models that have been coined “phase
field crystal” (PFC) models. The equilibrium thermodynamics and non-equilibrium kinetics of a PFC
model is analyzed. Chapter 8 deals with dynamics in cDFT and PFC type theories.

Some opics presented herein require some familiarity with advanced topics in statistical mechanics
and condensed matter physics. Such topics are reviewed briefly here, as required, in order to not break
the flow from the main topic of phase field modelling; they are, however, covered in depth in other
primary references, to which the reader is referred for further reading.

I wish to thank my graduate students and my many collaborators for the many discussions which
helped shape the flow and content of this book. As with anything in print, this book likely contains

1
I apologize in advance to the purists for swapping the variable G $ F for the Helmholtz and Gibbs free energies; I

enjoy using G over F for the former.

iv



typos and oversights. I would be delighted to hear from readers about any such errors or omissions.
Please do not hesitate to contact me at Nikolaos.Provatas@McGill.ca
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Chapter 1

Thermodynamics and Phase
Coexistence

This Chapter begins with a basic tutorial on thermodynamic potentials. We get some concepts and
definitions out of the way, as well as some relationships between thermodynamic variables and the
concept of thermodynamic potentials and their extrema. Material developed in the first tutorial will
be used to derive conditions of equilibrium phase coexistence in a pure material and a binary alloy by
considering their description in terms of both mass density and alloy concentration, respectively.

1.1 Energy, Work, Heat and The First Law of Thermodynamics

The first law of thermodynamics dictates that we can break the internal energy of a closed system into
two contributions,

dE = dW + dQ (1.1)

where dW is the work done on/by the system and dQ is the heat energy added or removed from
the system through non-mechanical means (friction, heating up the system, etc). It is instructive to
explore the meaning of the terms dW and dQ and their roles in changing dE.

The term dW is usually expressed in terms of mechanical work. For example, in an isotropic
material such as a fluid (gas or liquid), an applied pressure does work dW = �pdV on the system,
where p is the pressure of the system and dV is its volume change 1. In the case of an ideal gas, the
work imparted onto a system by small change in volume dV imparts an increase in kinetic energy of
the surface atoms colliding with the surface, which is rapidly distributed into an increased average
kinetic energy of the gas’ constituent particles. In a solid, atoms or molecules are fixed to specific
lattice sites (on average). Here, work can also impart kinetic energy through the surface of the atomic
vibrations. However, the larger contribution to a materials internal energy comes in the form of
increased potential energy as the ”bond-springs” holding atoms in place are stretched or compressed.

Heat flow dQ into a system can occur when a system is in contact with another system at a
di↵erent temperatures. In this case, the flow of heat into a system represents an change in the average
kinetic energy of its constituent particles. Another case, to be discussed in more detail in the next
section, is one where heat flowing into/out of the system causes the system to change between di↵erent

1
Pressure has units of force/area, and can be applied is various ways. In what follows, we imagine it is applied

uniformly around the container walls. To visualize this, take a soft plastic bottle and remove much of the air from within

by placing into it a lit match and sealing the bottle cap. As the flame depletes most of the oxygen, the bottle will start

to “uniformly” squeeze inwards from many surfaces simultaneously. Adding up �p�V over all surface elements will give

the total work done on the system of box.

1



equilibrium states that all consistent with a given temperature, i.e., isothermally. These states can be
encoded by the system entropy (denoted by S), and the change in heat flow between these state of
entropy is represented by dQ = TdS, where T is the system temperature. Entropy (S) is abstraction
that captures the number of configurations (e.g., momenta and coordinates) of the system that are
consistent with a given internal energy.

1.2 Entropy, Heat and The Second Law of Thermodynamics

The fundamental thermodynamic connection between entropy and heat transfer in and out of a system
during some change must be more formally defined to be more generally applicable. It is couched in
the form of of a law, namely The Second Law of Thermodynamics. Consider measuring the heat flow
into and out of a system during some cyclic process that is broken into infinitesimal steps. Doing
so for any process, it is always observed that the integral of the ratio dQ/T over the cyclic process
satisfies I

dQ

T
 0 (1.2)

The equality holds for any reversible, quasi-static processes. For a reversible process, Eq. (1.2) becomes
path independent and can be equivalently expressed in terms of a state function, which is a function
of the state variables of the system. We denote this state function as the entropy S, and make the
association

dS =
dQ

T
(1.3)

For an irreversible process, the inequality holds in Eq. (1.2). To understand what this means,
decompose the path integral of Eq. (1.2) into an irreversible process path from states a! b and then
a reversible processes along a path form b! a. Denote the entropy change along the reversible path
b! a as �S, and note that it is the minus of the reversible process from a! b. The complete path
integral of Eq. (1.2) for the process a! b and b! a thus becomes,

I
dQ

T
=

Z

a!b

dQ

T
��S

rev
a!b

< 0 (1.4)

This implies that, in general, for any given irreversible process path (let us drop the notation a! b),
the change of the entropy function of a system satisfies,

�S >

Z
dQ

T
(1.5)

The inequality in Eq. (1.5) implies that we can have, for an irreversible process, �S > 0 even when
�Q = 0. An intuitive example is the rapid expansion of a gas into a thermally shielded (adiabatic)
container. In the case of a reversible process on the other hand, Eq. (1.3) and Eq. (1.1) allows for a
quantity of heat absorbed from a reservoir to do useful work (e.g. expand a piston) in one part of a
cycle, and then for work to be done to transfer a quantity of heat back into the reservoir in another
part of the process; in both part of such an exchange, the heat transferred is expressible by the changes
in the entropy state of the system.

1.3 Thermodynamic State Functions

We saw that the internal energy E is relatable to heat and work through the first law of thermody-
namics, but since work is related to changes in volume, internal energy is thus also a function of the

2



state of system’s entropy S and volume V . Internal energy is an example of a thermodynamic state
function, but will also sometimes be refereed to here as a potential as in Ref. [29], although the term
potential is, formally, used to define quantities such as temperature (T ), pressure (p) and chemical
potential (µ), which are called intensive variables and will be discussed further below. There are other
such state functions as well. For example, entropy S is also a thermodynamic potential dependent
on the temperature T and volume V . In this section we use the first and second laws to derive other
thermodynamic potentials, and their state variable dependencies.

1.3.1 Internal energy

Revisiting the first law, we use Eq. (1.3) to replace dQ! TdS in the 1st law of Eq. (1.1) and, assuming
an isotropic material, write the change in internal energy of a closed system as

dE = TdS � pdV (1.6)

Before we continue, there is one contribution to the change of internal energy that is missing and very
important to discuss. In the case of a permeable system, we can also change the energy of system by
adding or removing particles into the system. This change in the energy of the system is quantified
by increment µ�N , where dN is the change in the total number of particles in the system, and µ is
referred to as the chemical potential. The chemical potential describes changes to the internal energy
due to the change in chemical bonding that arise due to the change of particles in a system. It is
di↵erent from the kinetic energy contribution to the internal energy, which change the motional energy
of atoms, or the work done on a system which also accounts for changes potential energy that arise
from ”stretching” bonds between a given number of atoms/molecules.

Taking the changes of chemical potential into account allows us to write the change in internal
energy E of a system as

dE = TdS � pdV + µdN (1.7)

Equation 1.7 has three terms. The first relates to heat flow, expressed through the entropy –which
itself is related to the number of states accessible to a system. The second relates to the external work
done on the system. The last relates to number of particles contained in the system. We can think of
Eq. (1.7) as the total di↵erential of multi-variable function of the variables (S, V,N). In other words
we can write the internal energy as E = E(S, V,N).

1.3.2 Helmoltz free energy

While the volume V and particle number N can be measured in many situations, entropy is not
something we can readily measure. We can get around this problem by performing a Legendre trans-
formation to E in order create another potential with di↵erent natural variables. Here is an example.
Define a new thermodynamic function G by

G = E � TS (1.8)

Why is this useful? To see this take the di↵erential of Eq. (1.8),

dG = dE � TdS � SdT = TdS � pdV � TdS � SdT + µdN

= �SdT � pdV + µdN (1.9)

If we again interpret Eq. (1.9) in the context of a function of multiple variables, we conclude that
G = G(T, V,N). The function G is called the Helmholtz free energy and is also thermodynamic
state function. Thus, by the Legendre transformation we made a state functions that changed the
description of the system from the variables (S, V,N) to (T, V,N).

3



1.3.3 Gibbs free energy

We can also describe the state of the system knowing only temperature, pressure and number of
particles. We can define another function, through a Legendre transformation of the Helmholtz free
energy according to

F = G+ PV (1.10)

As before, taking di↵erentials of Eq. (1.10), we obtain

dF = dG+ pdV + V dp = �SdT � pdV + µdN + pdV + V dp

= �SdT + V dp+ µdN (1.11)

This defines the Gibbs free energy as a state function of T, p,N , i.e., F = F (T, p,N).

1.3.4 Enthalpy

Yet another state function is the enthalpy, defined by a Legendre transformation of the internal energy
according to

H = E + PV (1.12)

Taking di↵erentials and using Eq. (1.7) yields

dH = dE + pdV + V dp = TdS � pdV + µdN + pdV + V dp

= TdS + V dp+ µdN, (1.13)

which makes the enthalpy a state functon of S, p,N , i.e., H = H(S, p,N).
Figure (1.1) provides an easy mnemonic for remembering the derivatives of Eqs. (1.7),(1.9),(1.11)

and (1.13) with respect to their natural state variables, e.g., (@G/@T )V = �S or (@H/@S)p = �T ,
etc. Note that the chemical potential is not shown in Fig. (1.1) as it is always the derivative of a state

Figure 1.1: The functions E,G, F,H are flanked by their respective natural variables (on either side
or top and bottom). For example, G = G(V, T ). Derivatives with respect to one argument, with the
other held fixed, gives a variable along one of the diagonals, either with or against the direction of the
arrow. Going against the arrows yields a negative sign, e.g, (@G/@T )V = �S.

function with respect to the number of particles while holding all other natural variables fixed.

1.3.5 Grand potential energy

An important thermodynamic state function that is useful is the grand potential, defined by a Legendre
transformation of G according to

⌦ = G� µN (1.14)

4



As before, taking di↵erentials yields

d⌦ = dG� µdN �Ndµ

= �SdT � pdV + µdN � µdN �Ndµ

= �SdT � pdV �Ndµ (1.15)

The grand potential is a fucntion of T, V, µ, i.e., ⌦ = ⌦(T, V, µ).

1.4 Extrema of Thermodynamic State Functions

As mentioned previously, the functions S, E, H, G F and ⌦ are usually called thermodynamic state
functions. It was mentioned that some authors also called them “potentials” [29]. The analogy
with a potential may made because thermodynamic equilibrium is defined as an extremum of these
”potentials” with respect to the variables with which they are defined. For example, inspection of
Eqs. (1.7), (1.9), (1.11), (1.13) and (1.15) gives

(dS)E,V,N = 0

(dE)S,V,N = 0

(dH)S,p,N = 0

(dG)T,V,N = 0

(dF )T,p,N = 0

(d⌦)T,V,µ = 0 (1.16)

where the subscripts in Eqs. (1.16) denote what thermodynamic variables are held fixed in each case
when defining equilibrium via any of the potentials. Expanded discussions of this topic are also found
in Chapter 3 of Ref. [5] and Ref. [30].

The extremum properties in Eqs. (1.16) provide a powerful methodology for determining the ther-
modynamics of any system. They hold not only in a single phase system (i.e. a system with one
homogeneous state of matter in it) but also in a system that contains multiple phases in mutual equi-
librium. For example, consider a system in equilibrium whose thermodynamic state can be expressed
with respect to the natural variables of one of the state functions as well as with respect to some
on additional internal variables [30]. These can describe, for example, the volume V� of one of the

contained phases called �, relative to the total volume V of the system, or the number of particles N�
↵

of element ↵ in phase �, relative to total number of particles N in the system. Thermodynamic state
functions can be then minimized with respect to internal variables such as V� or N�

↵ , subject to any
constraints these variables obey relative to V or N . We will see some examples of this below.

1.5 Extensive Variables and Homogeneous Functions

The state functions S, E, H, G, F and ⌦ are called extensive, which means they become larger in
proportion to the size of their natural extensive variable (e.g., V or N) as the system they describe
is scaled up, while maintaining a homogeneous density in any given sub-volume of that system 2. We
next illustrate the extensiveness and homogeneity property on some of the thermodynamic potentials
and some interesting results that arise from these properties.

2
It is noted that such a homogeneous sub-volume of a system will be considered to be any phase of matter such as

gas, liquid, solid, plasma, nuclear pasta, etc..
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1.5.1 Helmholtz free energy

Consider a multi-component system. The Helmholtz free energy is generalized to G(T, V, {Ni})),
where V is the volume of a system and {Ni} ⌘ {N1, N2, · · ·Nn} is the set of numbers of particles of
each component indexed by the label i. Assume for the moment, we are just taking about a ”black
box” with homogenous properties within. Since G is an extensive quantity it should get larger as its
volume and number of particles go to infinity. But since we said the system is homogeneous, the ratio
of Ni/V should be fixed, otherwise the system would not remain homogeneous in particle density as
it becomes larger. In that way, the ”extensive” and ”homogeneous” attributes can be simultaneously
satisfied. This also implies that the Helmholtz free energy should be written as [5]

G(T, V, {Ni}) = V g(T, {ni}), where {ni} ⌘
⇢
N1

V
,
N2

V
, · · · Nm

V

�
(1.17)

where g is the Helmoltz free energy density of the system and ni = Ni/V is the density of the
component i, where i = 1, · · · ,m. Let’s specialize this discussion to just two components for the
moment to keep things simple. From the two-component version of Eq. (1.9) we have

p = � @G

@V

����
T,NA,NB

= � @

@V
(V g(T, nA, nB))

����
T,nA,nB

= V
NA

V 2

@g

@nA

+ V
NB

V 2

@g

@nB

� g (1.18)

Eq. (1.18) leads to the well known relation between pressure, p, and the free energy density,

p = �
✓
g � nA

@g

@nA

� nB

@g

@nB

◆
= � (g � nAµA � nBµB) (1.19)

where

µi ⌘
@G

@Ni

����
T,V,Nk 6=Ni

=
@g

@ni

����
T,nk 6=ni

(1.20)

is the definition of the chemical potential of species i = {A,B}, given here in terms of the Helmholtz
free energy or in terms of the Helmholtz free energy density. Equation (1.20) also applicable to a
system with m components.

It is often convenient to work with component number fractions, ci = Ni/N , also called the
concentration of component i. To do so, we express the overall system density by ⇢̄ = NA/⌫o, with
NA being Avogadro’s number and ⌫o the molar volume (m3

/mole). In terms of these variables, the
concentration can be written in several ways,

ci =
Ni

N
=

ni

⇢̄
=

⌫o

NA

ni (1.21)

Through the variable transformation in Eq. (1.21), the free energy density g can be transformed to a
function of the ci, which we denote g̃(T, {ci}), where {ci} is the set of component concentrations. By
the chain rule, the right hand side of Eq. (1.20) then leads to

µ̃i =
@g̃

@ci

����
T,ck 6=ci

(1.22)

where µ̃ = (NA/⌫o)µi is defined as the chemical potential in units of joules/m3 (units of µi are
joules/particle). It is noted that Eq. (1.22) tacitly assumes that the molar volume (or density) of the
whole system remains fixed; this is a fairly good approximation, particularly for so-called substitutional
alloys where the molar volume is set by the crystal lattice of the solvent.
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1.5.1.1 Description in terms of solute concentration variables

It is often the case in the description of mixtures such as metal alloys that the thermodynamic
potentials are written in terms of the concentrations of the so-called minority species or the solutes,
while not explicitly referencing the concentration of the majority species, also called the solvent. To
transform to this description, we begin by relating the individual particle number to the total number
of particles in the system to N by

mX

i=1

Ni = N, (1.23)

where m denotes the number of particle species (or components). In terms of component densities,
Eq. (1.23) becomes

mX

i=1

ni =
N

V
= ⇢̄ =

NA

⌫o
, (1.24)

Equation (1.23) can be used to eliminate one of the components in the description of the free energy.
Here, we pick to eliminate the component Nm, where “m” denotes the index of the solvent, although
the steps that follow will be true regardless of which concentration is eliminated. This implies we can
describe the system through the free energy as

Gm(T, V, {N↵}m�1, N) = V gm(T, {n↵}m�1, ⇢̄), (1.25)

where the subscript m signifies that the component Nm has been eliminated from the free energy G

in terms of N via Eq. (1.23) or nm has ben eliminated from g in terms of ⇢̄ via Eq. (1.24).
To proceed, we adapt the di↵erential law in Eq. (1.9) to m components as

dG = �SdT � pdV +
mX

i=1

µidNi (1.26)

We eliminate the dNm term in the sum of Eq. (1.26) using

dNm = dN �
m�1X

i=1

dNi (1.27)

Using Eq. (1.27) to eliminate the last term of Eq. (1.26) yields the di↵erential of Gm, i.e.,

dGm = �SdT � pdV +
m�1X

i=1

(µi � µm) dNi + µmdN, (1.28)

from which is obtained
@Gm

@Ni

����
T,V,N,Nk 6=Ni

= µi � µm ⌘ �µi, (1.29)

where it is implied that i spans the solute components i = 1, · · · ,m�1 and k represents any component
other than i. The di↵erence �µi is often referred to as the inter-di↵usion potential.

To obtain �µi in terms of gm, we keep V (the volume of the whole system) fixed, and divide
Eq. (1.28) by V , recalling that Gm = V gm. This gives

dgm = �s dT +
m�1X

i=1

�µi dni + µm d⇢̄ (1.30)
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where s = S/V and ⇢̄ = 1/⌫o is the total system density. From Eq. (1.30) is obtained

@gm

@ni

����
T,⇢̄,nk 6=ni

= �µi (1.31)

We can further define g̃m(T, {ci}m�1) as the free energy density gm written in terms of species con-
centrations ci. Using the relations ni = ⇢̄ci and µ̃ = (NA/⌫o)µi then gives

@g̃m

@ci

����
T,⌫o,nk 6=ni

= �µ̃i (1.32)

The free energy g̃m(T, {ci}m�1) and Eq. (1.32) are quite frequently used as descriptors of the ther-
modynamics of metallic alloys in the physical metallurgy literature. It is noted that Eq. (1.32) holds
the total molar volume of the system fixed. This is a good approximation to assume holds in dilute
mixtures and will be tacitly assumed hereafter.

1.5.2 Grand potential energy

We begin by extending the definition of the grand potential defined in Section (1.3.5) tom components,

⌦ = G�
mX

i=1

µiNi (1.33)

Using Eq. (1.26), the m-component analogue of Eq. (1.15) thus becomes

d⌦ = �SdT � pdV +
mX

i=1

Nidµi, (1.34)

from which we directly obtain

Ni = �
@⌦

@µi

����
T,V,µk 6=µi

(1.35)

The extensiveness property applied to ⌦ becomes

⌦(T, V, {µi}) = V !(T, {µi}), (1.36)

where ! is the grand potential density and the notation {µi} represents the set of all component
chemical potentials 3, each indexed by i. Equation (1.34) together with Eq. (1.36) give

@⌦

@V

����
T,{µi}

= �p = !(T, {µi}) = g �
mX

i=1

niµi, (1.37)

where the right-most equality in Eq. (1.37) is obtained by dividing Eq. (1.33) by V . The analogue of
Eq. (1.35) in terms of component densities is obtained by substituting Eq. (1.36) in Eq. (1.35), which
leads to

ni = �
@!

@µi

����
T,µk 6=µi

(1.38)

3
Note that there the set of densities {ni} do not explicitly appear in descriptor !(T, {µ↵}) since in the grand potential

ensemble, the densities are functions of the chemical potentials.
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Equation (1.38) is equivaently derived by taking the derivative of ! in Eq. (1.37) with respect to µi

and using the right-most equality in Eq. (1.20).
Equation (1.37) shows that the pressure is equal to the grand potential density. Since in thermal

equilibrium the pressures of any two parts of a system are the same, this implies that the grand
potential densities of any two parts of a system are also the same. This will be a valuable tool later
for determining the conditions for the coexistence between two phases.

1.5.2.1 Description in terms of solute concentration variables

As in Section 1.5.1.1, we can write the grand potential in terms of the concentrations of the solute
components of a material. We will again relate the individual particle numbers to the total number
of particles N and use Eq. (1.23) to eliminate component Nm of the solvent. We begin by using
Eq. (1.23) to eliminate Nm in the terms of Eq. (1.33), which gives

⌦m = Gm(T, {n↵}m�1, ⇢̄)�
m�1X

i=1

Ni(µi � µm)� µmN, (1.39)

where, as above, the notation ⌦m indicates that we are expressing ⌦ using the free energy in which
the Nm component has been replaced in terms of the other components, i = 1, 2, · · ·m� 1. We next
divide ⌦m by V , after re-expressing Gm = V gm in Eq. (1.39). This gives

!m = gm(T, {n↵}m�1, ⇢̄)�
m�1X

i=1

ni(µi � µm)� µm⇢̄, (1.40)

Taking the variation of !m in Eq. (1.40) gives

d!m = dgm(T, {n↵}m�1, ⇢̄)�
m�1X

i=1

�µidni � µmd⇢̄�
m�1X

i=1

ni�µi � ⇢̄ dµm, (1.41)

where we gave again used the shorthand notation �µi ⌘ µi � µm. Substituting Eq. (1.30) for dgm in
Eq. (1.41) gives

d!m = �sdT �
m�1X

i=1

nid(�µi)� ⇢̄ dµm, (1.42)

Keeping the chemical potential of the solvent atoms, µm, fixed, Eq. (1.42) gives

�ni =
@!m

@ (�µi)

����
T,µm,�µk 6=�µ̃i

(1.43)

Moreover, by rescaling the chemical potentials as �µ̃ = (NA/⌫o)�µi, and recalling that ci = (⌫o/Na)ni,
Eq. (1.43) can also be re-cast as

�ci =
@!̃m

@ (�µ̃i)

����
T,µm,�µ̃k 6=�µ̃i

(1.44)

where !̃m denotes the grand potential density !m expressed in terms of the �µ̃i. It is noted that
Eq. (1.44) holds the chemical potential µ̃m of the solvent fixed. This is a good approximation to
assume holds true for dilute mixtures and will be tacitly assumed hereafter. Equation (1.44) is
important when developing a phase field models (or most theories of mixtures, actually) of alloys from
a grand potential functional, where the free energy measured is in terms of solutes and the “chemical
potential’ usually written as “µ” in the literature tacitly assumes �µ̃.
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1.5.3 Gibbs free energy

This section ends by by applying the “extensiveness” property to the Gibbs free energy. The m-
component analogue of Eq. (1.11) is given by

dF = �SdT + V dp+
mX

i=1

µidNi, (1.45)

where Ni denotes the total number of particles of component i. From Eq. (1.45) we directly obtain

@F

@Ni

����
T,p,Nk 6=Ni

= µi (1.46)

The extensive form of the Gibbs free energy is written as

F (T, p, {Ni}) = Nf̃(T, p, {ci}) where {ci} ⌘
⇢
N1

N
,
N2

N
, · · · Nm

N

�
, (1.47)

where f̃ is the Gbbs free energy density, N is the total number of particles and ci denote the concen-
tration of particle species i, defined previously. If we fix the total number of particles in the system,
N , and dividing Eq. (1.45) by N , we obtain

@f̃

@ci

�����
T,p,ck 6=ci

= µi (1.48)

Equivalently, we can arrive at Eq. (1.48) by substituting F = Nf̃ directly into the left-hand side of
Eq. (1.46) and using the chain dci/dNi = 1/N .

An interesting feature of the Gibbs free energy (or ensemble) can be appreciated if we consider the
case where a system is homogeneously expanded while holding the temperature (T ) and pressure (p)
constant, and maintaining the composition ci of each component the same. Since Ni = ciN , equation
Eq. (1.45) becomes

dF =

 
mX

i=1

µici

!
dN, (1.49)

Integrating Eq. (1.49) from 0 to N gives

F =

 
mX

i=1

µici

!
N (1.50)

Comparing this last expression with Eq. (1.47) implies

f̃(T, p, {ci}) =
mX

i=1

µici (1.51)

1.5.3.1 Description in terms of solute concentration variables

As with the Helmholtz and grand potentials, we can also represent the Gibbs free energy in terms
of the solute concentrations of a system, removing explicit dependence of the solvent. Re-writing
Eq. (1.23) in terms of concentrations (i.e., ci = Ni/N) gives

mX

i=1

ci = 1, (1.52)
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which implies that we can eliminate one of the component or concentration variables from F or f̃ ,
respectively. This is often the solvent element in a mixture or alloy. As we have done previously, let
us denote the solvent species by i = m. We thus can express F as

Fs(T, p, {Ni}m�1, N) = Nfs(T, p, {ci}m�1), (1.53)

where here we use the notation Fs to denote that the solvent component Nm has been eliminated from
the free energy F , and use fs to denote that the solvent concentration cm has been eliminated from f̃ .
Also, the notation {cı}m�1 denotes the subset of {ci} with cm removed (analogously for the notation
{Nı}m�1 ). In physical metallurgy fs is typically the free energy density of an alloy measured as a
function of the solute concentrations in thermodynamic databases. Using the relation

dNm = dN �
m�1X

i=1

dNi (1.54)

to eliminate the m
th term in the sum of Eq. (1.45) yields

dFs = SdT + V dp+
m�1X

i=1

(µi � µm) dNi + µmdN, (1.55)

from which we directly obtain

@Fs

@Ni

����
T,p,N,Nk 6=Ni

= µi � µm ⌘ �µi (1.56)

Keeping the total number of particles in the system (N) fixed, dividing Eq. (1.55) by N and using
Eq. (1.53) gives

@fs

@ci

����
T,p,ck 6=ci

= µi � µm = �µi (1.57)

Equation (1.57) is a relation for �µi ⌘ µi � µm, which is also sometimes called the inter-di↵usion
potential and measures the chemical potential of solute component i with respect to the solvent of the
mixture or alloy. In some literature, �µi is just referred to as the “chemical potential” of the mixture
or phase, etc.

1.5.3.2 Alternate derivation of the inter-di↵usion potential of a mixture

It is instructive to follow an alternate path for deriving �µi in term of fs(T, p, {ci}m�1), which is the
free energy typically measured experimentally. For generality in this subsection, we will index the
solvent component by cs. rather than by cm as we did above. Doing so and applying the chain rule
to Fs, which gives

µi =
@Fs

@Ni

����
T,p,Nk 6=Ni

= N

mX

↵=1
↵ 6=s

@fs

@c↵

@c↵

@Ni

+ fs
@N

@Ni

, (1.58)

where µi is the chemical potential of the ith component, which is assumed to be di↵erent from s. From
the definition of ci = Ni/N and Eq. (1.23), we arrive at

µi = fs + (1� ci)
@fs

@ci
�

mX

↵=1
↵ 6=s,i

c↵
@fs

@c↵
, (1.59)
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where the sum now excludes both eliminated component (↵ = s) and the component ↵ = i whose
chemical potential is being evaluated. For the important special case of a two-component (binary)
mixture, Eq. (1.59) gives

µi = fs + (1� ci)
@fs

@ci
(1.60)

Note the di↵erence in chemical potentials calculated via the Gibb’s free energy versus that obtained
via the Helmoltz free energy under conditions of constant volume (Eq. (1.20)).

It is instructive to consider the important special case of a binary alloy, whose components are
denoted i = A,B, where A is typically labelled the solvent and B the solute. Treating the element s
in the meaning (and notation) of fs first as s = A and then s = B, Eq. (1.60) gives

µB = fA(cB) + (1� cB)
@fA(cB)

@cB

µA = fB(cA) + (1� cA)
@fB(cA)

@cA
(1.61)

It is noted that since since cA = 1� cB, fB(cA) = f̃(cA, 1� cA) = fA(cB) = f̃(1� cB, cB). Moreover,
we have @fB/@cA = �@fA/@cB. As a result, the di↵erence µB � µA becomes

µB � µA =
@fA(cB)

@cB
(1.62)

which could also have been obtained directly from Eq. (1.57) specialized to two components where the
solvent m = A and solute i = B.

1.6 Intensive Variables and Potentials

Intensive variables are thermodynamic descriptors of the state of the system that do not depend on
the extent of the system, which we saw includes the total energy (E), entropy (S), free energy (F ) etc,
or the values of any extensive variables with which the system size scales (e.g., N and V ). Another
important property of intensive variables is that they are constant through a system in thermodynamic
equilibrium. Here we illustrate three important intensive variables seen previously and which are the
most commonly used thermodynamics state descriptors in materials science: the temperature T ,
pressure p and chemical potential µ. These variable are also potentials.

We can illustrate intensive variables using a simple example of entropy extremization. Consider
a thermally isolated system (i.e. one in which heat cannot enter or leave) partitioned into two sub-
systems occupying two physical regions in space. Variables associated with the two regions are denoted
by subscripts ”1” and ”2”, respectively. Imagine that the two regions are separated by an imaginary,
movable, massless and frictionless divider, and which can interact thermally. Due to extensively of
the total entropy, internal energy, volume and number of particles, we have

Ntot = N1 +N2

Vtot = V1 + V2

Etot = E1 + E2

Stot = S1 + S2 (1.63)

Since the system is isolated the totals on the left hand side of Eqs. (1.63) don’t change, i.e. �Etot =
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�Stot = �Ntot = �Vtot = 0, and so

�N1 = ��N2 = ��N̄

�V1 = ��V2 = ��V̄

�E1 = ��E2 = ��Ē

(1.64)

Consider next a small change in total system entropy, written as via the corresponding changes of
its sub-systems, i.e., �Stot = �S1 + �S2. Using Eq.(1.7) for each region (sub-system), let us write
�Stot in terms of the changes of internal energy, volume, and particle number of the sub-systems,
each constrained by Eq. (1.64). This gives,

�Stot =

✓
1

T1
� 1

T2

◆
�Ē +

✓
p1

T1
� p2

T2

◆
�V̄ �

✓
µ1

T1
� µ2

T2

◆
�N̄ (1.65)

For a system in equilibrium, (�Stot)E,V,N = 0 requires that �Stot be a minimum with respect to each
of Ē.V̄ , N̄ , each of which act as an internal degree of freedom. This gives,

T1 = T2 (1.66)

p1 = p2 (1.67)

µ1 = µ2 (1.68)

This, of course, is a well known result that the pressure, temperature and chemical potentials of
sub-systems in mutual equilibrium with each other must be the same.

The potentials T , p ad µ are the most common potentials used when dealing with phase transfor-
mations in materials. As mentioned above, potentials are intensive variables as they are independent
of the extent of the system, i.e. they do not scale with the system size or the number of particles. In-
deed, some subset of these potentials completely define the thermodynamic state of a system and any
constituent phases it may contain. On the other hand, extensive variables such as N1, N2, V1, V2 are
internal to the system and depend on the extent of its sub-systems. It should be noted that there are
other types of intensive variables that further characterize a state of a system or a phase (sub-system)
in a system which are not potentials. One example is molar volume, Vm, which quantifies the volume
occupied by a system, or a phase within a system, per mole of total atoms in the system. While the
molar volume of di↵erent phases are also independent of the extent of the total system, they do not
have to be the same in each phase, while thermodynamic potentials do.

1.7 Equilibrium Phase Coexistence

One of the most powerful applications of thermodynamics is in the description of phase transforma-
tions. A phase transformation occurs when one phase of matter transforms into another, or multiple
other phases. There are generally two types of phase transformations: first order and second order
transformations. A well-known example of a second order transformation is phase separation, the
decomposition of one phase that is a a mixture of two components, into two distinct phase that are
rich(er) in one of the two components (think of oil and water separating out of a well-mixed salad
vinaigrette). This is spontaneously activated below the critical point (temperature) and exhibits a
the characteristic length scale that diverges (which defines the microstructure) as one approaches a
so-called critical point temperature. Such phase transformations also exhibit smooth derivatives of the
thermodynamic state functions when crossing though the critical point in a material’s phase diagram.
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We will not study second order phase transformation in this book. First order phase transformations
exhibit discontinuous derivatives of thermodynamic potentials across the transition point, which sig-
nals a discontinuous change of order, latent heat release, etc. As such, first order phase transitions
require nucleation to activate the growth of a stable phase. Moreover, they do not exhibit length scale
divergence near nor a critical point, but, rather, maintain atomically sharp interfaces that require
complex sharp-interface models to describe the kinetics of inter-phase boundaries. This book will
examine first order transformations.

Fundamental to all phase transformations is the notion of phase coexistence. This occurs when
one of more phases can be in mutual equilibrium over a surface of a material’s phase space, described
by a set of intensive variables. This will be examined further in this section.

1.7.1 Pure materials

As a first example of phase coexistence, we’ll consider a pure material, i.e., a system with a single
component, that is in a state of coexistence of two phases, solid(s) and liquid(L). We wish to describe
this coexistence in terms of thermodynamic variables. Specifically, these will be the density, temper-
ature and pressure. To proceed, we require a thermodynamic potential of this system on which to
apply the minimization procedure of the thermodynamic potentials discussed in Section (1.4). Assume
the system as a whole occupies a volume V , has a total of N particles and is at a temperature T .
Exploiting the assumed homogeneity of a phase and the corresponding extensively of its free energy,
Eq. (1.17) is used to write the total Helmholtz free energy of the system as

G(T, V,N) = Vsgs(T, ns) + VLgL(T, nL), (1.69)

where Vs is the volume of the solid, VL the volume of the liquid, while ns ⌘ Ns/Vs and nL ⌘ NL/VL

are the relative number densities of solid or liquid phases, respectively. The functions gs/gL are the
Helmholtz free energy densities of a single homogeneous phase of solid/liquid, respectively. Note that
VL, Vs, are actually implicit functions of the internal variables nL, ns through the conservation laws
VL + Vs = V , Ns +NL = N , which together imply

ns�s + nL�L = no

�L + �s = 1 (1.70)

where

�s ⌘
Vs

V
, �L ⌘

VL

V
, no ⌘

N

V
(1.71)

Solving Eqs. (1.70) yields

Vs =

✓
nL � no

nL � ns

◆
V

VL =

✓
no � ns

nL � ns

◆
V, (1.72)

which constitutes a so-called lever rule. Substituting Equations (1.72) into Eq. (1.69) gives a unified
free energy of the entire system of the form G = V g(T, no), where no = N/V .

Applying the extremum condition (dG)T,V,N = 0 implies minimizing with respect to the internal
densities ns and nL, while keeping V,N (or N/V = no) fixed. This yields

@

@ns

{Vsgs(T, ns) + VLgL(T, nL)} = Vs

@gs

@ns

+ gs
@Vs

@ns

+ gL
@VL

@ns

= 0

@

@nL

{Vsgs(T, ns) + VLgL(T, nL)} = VL

@gL

@nL

+ gs
@Vs

@nL

+ gL
@VL

@nL

= 0 (1.73)
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Through the use of Eqs. (1.72) it is straightforward to arrive at

gL � gs

nL � ns

= µs

gL � gs

nL � ns

= µL, (1.74)

where µs = @gs/ns and µL = @gL/nL . Equation (1.74) implies that µs = µL, while from Eq. (1.20)
we have,

µs ⌘
@gs

@ns

����
T

= µ
eq

µL ⌘ @gL

@nL

����
T

= µ
eq
, (1.75)

where µeq is the equilibrium value of the chemical potential that coexisting phase must both equal, as
we saw from Section (1.6). For each temperature Eqs. (1.74)-(1.75) can be solved to yield unique nl,
ns and µ

eq or, equivalently, for a unique µ
eq and some no consistent with nL and ns.

1.7.1.1 Pressure at co-existence in a pure material

Another approach to obtain the previous results is to minimize the Helmoltz free energy analogously to
how we minimized the entropy in Section (1.6). This will yield the well-known result that the chemical
potential, temperature and pressure of coexisting phases must be equal in equilibrium. Then, using
Eq. (1.19) for the pressure, we would arrive at

gs � nsµs = gL � nLµL = �p, (1.76)

while the chemical potentials of the two phases must satisfy µs = µL = µ
eq. This and Eq. (1.76) are

identical to Eqs. (1.74)-(1.75).
Notice that Eqs. (1.74) and (1.75) actually comprise three distinct equations in three unknowns

{ns, nL, µ
eq}, all of which are functions of temperature T . For each T , ns(T ) and nL(T ) comprise

the so-called solidus and liquids coexistence lines in the (n, T ) space of the phase diagram of a pure
material. Once we solve these equations for a given T , either of the equalities of Eq. (1.76) uniquely
defins the coexistence pressure, peq, from which we can obtain the phase coexistence line in the (T, P )
space of the material.

1.7.2 Multi-Component Systems

Alloy phases are mixtures of di↵erent metal atoms. or phases with stoichiometric ratios of elemental
metals atoms. The simplest alloy is that of a binary mixture of two metals, which comprises two
types of atoms, species “A” and species “B”. We characterize a binary alloy by the ratio of c =
NB/(NA+NB) where NA is the number of A atoms and NB the number of B atoms. Usually, species
A is referred to as the solvent and B as the solute. Alloys can exist in di↵erent homogenous phases
or can exist as two or more coexisting homogenous phases. Coexistence in the case of a binary alloy
is trickier than in a pure material because one more degree of freedom, c, is introduced. A complete
description of phase coexistence requires a four-dimensional phase diagram, with cuts in (T, p), (n, T ),
and (c.T ) space. Before launching into the math of this topic, it is instructive to review a
general theorem about equilibrium phase coexistence.
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1.7.2.1 Gibbs phase rule

Understanding phase coexistence in complex materials is made easier by considering the question
of how many phases can coexist for a given set of thermodynamic variables, or alternatively, what
minimum number of thermodynamic variables need to be specified in order to describe coexistence
between a given number of phases. To determine this, consider the Gibbs free energy in the form of
Eq. (1.50). Recalling that Ni = ciN and combining this with Eq. (1.45) allows us to write

d

 
F �

mX

i=1

µiNi,

!
= �SdT + V dp+

mX

i=1

Ni dµi = 0 (1.77)

In terms of concentrations ci, Eq. (1.78) can expressed as

�s dT + v dp+
mX

i=1

ci dµi = 0, (1.78)

where s = S/N is the specific entropy and v is the specific volume. Equation (1.78) is the Gibbs-Duhem
relationship for alloys, an equation that ties together the [equilibrium] change of m+2 potentials, two
of which are T , p and m of which are the chemical potentials µi. It is noted that s, v and the ci all
depend on T , p and µi.

For a single phase, Eq. (1.77) defines m+ 1 independent potentials and one dependent potential.
For a system with multiple phases coexisting in mutual equilibrium, Eq. (1.78) holds for each phase,
where p, T and µi remain the same in each phase during a change. The application of Eq. (1.78) to
each of r phases thus defines m + 2 � r independent potentials that can be set, and one dependent
potential that is automatically determined.

The above discussion is at the core of the Gibbs Phase rule [15]. This states that for a system
in equilibrium, the number of degrees of freedom (i.e. free thermodynamic variables that can be
independently varied) f , the number of components (i.e. atomic species) m and the number of phases
r are related by

f = m� r + 2 (1.79)

For example, in a pure material (m = 1), Eq. (1.79) gives f = 2 for a single phase (r = 1), and f = 1
for two-phase coexistence (r = 2). As an example of the latter, recall that for a single-component
material examined in Section (1.7.1), two-phase equilibrium is entirely computed by specifying one
potential, the temperature T . From the Gibbs phase rule, this uniquely specifies the equilibrium
chemical potential µeq and the equilibrium pressure p = p

eq. Moreover, through knowledge of µeq

we can also determine the density (or specific volume) of each phase (and the volume fractions of
each phase if we know the average density of the entire system). Thus for a pure material, two phase
coexistence only occurs for a line in (T, p) space, each of which also corresponds to a region in (T, no)
space.

In an binary alloy there are 2 components (m = 2). Two-phase coexistence can be completely
described by specifying any f = 2�2+2 = 2 of the available thermodynamic potentials of the system.
Thus, if we specify the temperature T and pressure p in a binary mixture, 2-phase coexistence is
defined by a point in (T, p, µeq

A
, µ

eq
B
) space, from which the corresponding concentrations of each of

the two coexisting phase, c1 and c2, may be determined. It is noted thet c1 and c2 define range of
average concentrations co (or, equivalently average densities no) of the system, each endpoint of which
specifies the concentration of each of coexisting phases. For further details see Landau and Lifshitz
volume on Statistical Physics [15].
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1.7.2.2 Deriving the equilibrium conditions for binary alloys

To elucidate the conditions of the Gibbs phase rule with a concrete example, we consider here phase
co-existence in a binary alloy, we begin with the results of Section (1.6) and equate expressions
for chemical potential of each species and expressions for pressure between phases and make them
constants of the system, i.e. intensive variables. This is expressed as

µ
s

A
(⇢s

A
, ⇢

s

B
) = µ

L

A
(⇢L

A
, ⇢

L

B
) = µ

eq
A

µ
s

B
(⇢s

A
, ⇢

s

B
) = µ

L

B
(⇢L

A
, ⇢

L

B
) = µ

eq
B

!s(⇢sA, ⇢
s

B
) = !L(⇢LA, ⇢

L

B
) = p, (1.80)

where here ⇢J
I
denotes the density (assumed here in [moles/m3]) of component I(= A,B) in phase

J(=s, L) and
µ
J

I (⇢
J

A, ⇢
J

B) ⌘
�
@gJ(⇢

J

A, ⇢
J

B)/@⇢
J

I

�
T,N

(1.81)

denotes the chemical potential (assumed here in [J/mole]) of component I in phase J , with gJ being
the Helmholtz free energy density [J/m3]. Moreover,

!J(⇢
J

A, ⇢
J

B) =
X

I

⇢
J

I µ
J

I (⇢
J

A, ⇢
J

B)� gJ(⇢
J

A, ⇢
J

B) (1.82)

denotes the grand potential density, or pressure, of phase J . The right hand sides of Eqs. (1.80) are,
respectively, the equilibrium chemical potentials of component A (µeq

A
) and B (µeq

B
) and the equilibrium

pressure p of the system. The notation used for derivatives in Eq. (1.81) (and elsewhere) is
shorthand for

@gJ(⇢
J

A, ⇢
J

B)/@⇢
J

I ⌘ @gJ(⇢A, ⇢B)/@⇢I |⇢A=⇢J
A
,⇢B=⇢J

B

, (1.83)

where the index I = A,B.
Equations (1.80) comprise six non-linear equations in eight unknowns,

(⇢sA, ⇢
s

B, ⇢
L

A, ⇢
L

B, µ
eq
A
, µ

eq
B
, T, p) (1.84)

The Gibbs phase rule requires that we fix two the degrees of freedom to completely specify phase
co-existence between two alloy phases. This implies that we can fix, for example, T , p, and uniquely
specify an equilibrium states of {⇢s

A
, ⇢

s

B
, ⇢

L

A
, ⇢

L

B
, µ

eq
A
, µ

eq
B
}.

For what follows, it will be useful to continue from Eqs. (1.80) written in a more explicit form,

@gs(⇢sA, ⇢
s

B
)

@⇢
s

A

=
@gL(⇢LA, ⇢

L

B
)

@⇢
L

A

= µ
eq
A

@gs(⇢sA, ⇢
s

B
)

@⇢
s

B

=
@gL(⇢LA, ⇢

L

B
)

@⇢
L

B

= µ
eq
B

(1.85)
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A

+ ⇢
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B

@gL(⇢LA, ⇢
L

B
)

@⇢
L

B

� gL(⇢
L

A, ⇢
L

B) = p

1.7.2.3 Recasting equilibrium conditions in term of concentration and density

It is instructive to convert to variables that can typically used to describe metal alloys. This is done
by transforming to phase densities and phase concentration,

⇢J = ⇢
J

A + ⇢
J

B, J = s, L

cJ =
⇢
J

B

⇢
J

A
+ ⇢

J

B

, J = s, L (1.86)
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The mapping between new and old variables is given by

⇢
J

B = ⇢JcJ , J = s, L

⇢
J

A = (1� cJ)⇢J , J = s, L (1.87)

It will also be convenient in what follows to introduce a new variable,

µ
eq ⌘ µ

eq
B
� µ

eq
A
, (1.88)

which was defined in Section (1.5.3) as the inter-di↵usion potential.
To switch between variable representations via Eqs. (1.87), we introduce two new free energy

density functions, Gs(cs, ⇢s) and GL(cL, ⇢L), defined through

gs(⇢
s

A, ⇢
s

B) ⌘ Gs(cs(⇢
s
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L
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L
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L

A, ⇢
L

B)) (1.89)

In terms of Gs and GL, and the chain rule, we derive
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(1.90)

Using Eqs. (1.90) and the above variable transformations, Eqs. (1.85) become

�cs
⇢s

@Gs(cs, ⇢s)

@cs
+
@Gs(cs, ⇢s)

@⇢s
=
�cL
⇢L

@GL(cL, ⇢L)

@cL
+
@GL(cL, ⇢L)

@⇢L
= µ

eq
A

(1.91)

1� cs

⇢s

@Gs(cs, ⇢s)

@cs
+
@Gs(cs, ⇢s)

@⇢s
=

1� cL

⇢L

@GL(cL, ⇢L)

@cL
+
@GL(cL, ⇢L)

@⇢L
= µ

eq
B

(1.92)

⇢s
@Gs(cs, ⇢s)

@⇢s
�Gs(⇢s, cs) = ⇢L

@GL(⇢L, cL)

@⇢L
�GL(⇢L, cL) = p (1.93)

The six equations that are generated from Eqs. (1.91)-(1.93) can now be, in principle, be solved for
{⇢s, ⇢L, cs, cL, µeq

A
, µ

eq
B
}, assuming T and p are specified. For future reference, it is noted that the last

of Eq. (1.85) generates another equation,

(cs⇢s � cL⇢L)µ
eq + (⇢s � ⇢L)µeq

A
= � [GL(cL, ⇢L)�Gs(cs, ⇢s)] , (1.94)

which is not independent of the set in Eqs. (1.91)-(1.93), but which will be useful for relating the
inter-potential µE to the other variable of this system.
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1.7.2.4 Final form of coexistence conditions in terms of concentration and density

In this subsection, Eqs. (1.91)-(1.94) will be further simplified by: (1) replacing µ
eq
B

in favour of µE;
(2) explicitly solving out for µ

eq
A
, thus reducing the set of coexistence conditions to five equations in

the five unknowns {⇢s, ⇢L, cs, cL, µeq}, assuming, as always, that T and p are specified.
We begin by subtracting Eq. (1.92) from Eq. (1.91), which gives the following two new equations,

1

⇢s

@Gs(cs, ⇢s)

@cs
= µ

eq

1

⇢L

@GL(cL, ⇢L)

@cL
= µ

eq (1.95)

Another new equation is obtained by re-arranging the first (i.e. the left side) equation in either of
Eq. (1.91) or Eq. (1.92) (doesn’t matter which), and substituting for the corresponding derivatives
with respect to concentration by µ

eq using Eqs. (1.95). This yields

@GL(cL, ⇢L)

@⇢L
� @Gs(cs, ⇢s)

@⇢s
= (cL � cs)µ

eq (1.96)

Finally, use the liquid and solid expressions for p in Eq. (1.93) to eliminate the derivatives with respect
to solid and liquid density in Eq. (1.96), respectively, yielding

(cL � cs)µ
eq �

✓
1

⇢L
� 1

⇢s

◆
p =

GL(⇢L, cL)

⇢L
� Gs(⇢s, cs)

⇢s
(1.97)

(Alternatively, Eq. (1.97) could have been derived as follows. Replace µeq
A

in Eq. (1.94) by the leftmost
expression of µeq

A
in Eq. (1.91), and use the first of Eqs. (1.95) to eliminate the derivative with respect

to solid concentration (cs) by µ
eq. This yields

⇢L (cL � cs)µ
eq + (⇢L � ⇢s)

@Gs

@⇢s
= GL(⇢L, cL)�Gs(⇢s, cs) (1.98)

Eq. (1.97) is then obtained by substituting the solid expression for p from Eq. (1.93) into Eq. (1.98)).
The final system of coexistence equations used hereafter is found by collecting the two equations

in Eq. (1.95), Eq. (1.97), and the two pressure equations in Eq. (1.93). These are collected here again
for convenience and future reference,
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p, (1.99)

Equations (1.99) are supplemented with the additional equation that gives µeq
A

one the other equilib-
rium states are known, i.e.,

µ
eq
A

= {p+Gs(cs, ⇢s)} /⇢s � csµ
eq
, (1.100)

which is just the explicit solution of µeq
A
. With p specified, Eqs. (1.99) comprise five equations for

the five variables (cs, cL, ⇢s, ⇢L, µeq). It might appear that T is not in the problem but it is buried
implicitly in the setting of Gs, GL, the forms of which vary with T .
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1.7.2.5 Recasting equilibrium conditions in terms of molar free energies

In the metallurgical literature (where most experiments on metallic alloys are reported), free energy is
often quoted in units of J/mole not J/m3. Moreover, it is typical to speak of molar volumes of a phase
rather than density. Molar volume has units of m3

/mole, the inverse of a density. Equations (1.99) are
significantly simplified -and made more intuitive- by switching to molar volumes and molar energies.
Specifically we define

⌫J ⌘ 1

⇢J
, J = s, L (1.101)

GJ(⌫J , cJ) ⌘
GJ

⇢J
= ⌫JGJ(1/⌫J , cJ), J = s, L (1.102)

where [Gs,L] = J/mole and [⌫s,L] = m
3
/mole. In terms of G and ⌫, Eqs. (1.99) simplify to
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@⌫L
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GL(cL, ⌫L)� Gs(cs, ⌫s) = (cL � cs)µ
eq � (⌫L � ⌫s) p, (1.103)

The third and fourth of Eqs. (1.103) are obtained from the third and fourth of Eqs. (1.99) by noting
that ⇢J@GJ/@⇢J �GJ = ⇢

2
J
@GJ/@⇢J and that @⌫J/@⇢J = �1/⇢2

J
.

The system of Eqs. (1.103) are easy to intuit. They define a plane as a function of molar volume
and concentration (⌫, c) that is simultaneously tangent to the free energy functions Gs and GL at
the co-ordinates (⌫s, cs) and (⌫L, cL). The projection of line between (⌫s, cs) and (⌫L, cL) onto the
⌫ = 0 plane has slope µE, while on the c = 0 plane is equal to p. Equations (1.103) comprise
a common tangent plane construction, the 3D analogue of the more commonly known common
plane construction when we consider concentration as the only relevant variable -as is typically done
in most materials science books.

1.7.2.6 Dimensionless representation

The system of equations in Eqs. (1.99) can be re-written as a function of the following dimensionless
variables:

Ḡs,L ⌘
Gs,L

RT⇢o
, µ̄

eq ⌘ µ
eq

RT
, p̄ ⌘ p

RT⇢o
, ⇢̄s,L ⌘

⇢s,L

⇢o
, (1.104)

where ⇢o is a reference density and R is the natural gas constant. These units are convenient to make
contact with those used in some phase field crystal models (studied later in the course), where density
is scaled by a reference density ⇢o of the liquid phase at coexistence at some (T, p), and the free energy
density is made dimensionless by scaling by the energy density RT⇢o. In these units, Eqs. (1.99)
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become
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Another convenient scaling of Eqs. (1.103) is in terms of molar quantities, which has units of
m

3
/mole. Let ⌫o denote a reference molar volume of the liquid, and define
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With these re-scalings, Eqs. (1.103) become

@Ḡs(cs, ⌫̄s)

@cs
= µ̄

eq
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ḠL(cL, ⌫̄L)� Ḡs(cs, ⌫̄s) = (cL � cs) µ̄
eq � (⌫̄L � ⌫̄s) p̄, (1.107)

1.7.2.7 Special case of equal densities

For the special case where the solid and liquid densities are equal and set to the reference alloy density,
i.e. ⌫L = ⌫s, the number of unknowns reduces to (cs, cL, µeq). These three parameters are found by
solving the first two and last of Eqs. (1.103),

@Gs(cs)

@cs
= µ

eq

@GL(cL)

@cL
= µ

eq

GL(cL)� Gs(cs) = (cL � cs)µ
eq (1.108)

Equations (1.108) comprise the usual common tangent construction. The pressure is specified via
either of the third or fourth of Eq. (1.103), if the free energy is known as a function of the molar
volume (or density).
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Chapter 2

Nucleation

This chapter discusses the kinetics of nucleation. We do so in the context of solidification, although the
discussion is general enough to easily be extended to nucleation in other first order phase transitions.
The first section of this chapter follows closely the approach of Landau and Lifshitz [20]. The second
section follows the paper of James E. McDonald [23]. As the primary focus of this chapter be the
physics of nucleation rate theory, we will consider pure substances to keep the algebra to a minimum.
The last part of the chapter adapts the nucleation rate theory derived for a pure material to binary
mixtures.

2.1 Fokker Plank Equation: Evolution of Nuclei in Size Space

During a first order phase transition, a meta-sable liquid transforms, given enough time, to a more
stable solid state. This is initiated by a process of nucleation, whereby an embryo of solid of a
critical size large enough to overcome the energy barrier imposed by surface energy begone to grow.
Throughout the nucleation process (from the quench to meta-stability to the growth of the first
stable solid), there is a distribution function that governs the probability of a nucleus of any size.
This distribution is peaked at small nucleus sizes at early time, but broadens to include all sizes
after a period known as an ”incubation time” wherein meta-stable fluctuations allow nuclei to grow
progressively larger, until their size surpasses the aforementioned critical nucleus size. We denote
this function by f(a, t) and note that f(a, t) da gives the probability per volume of finding a nucleus
between the size ranges a and a+ da. Since nucleation growth and dissolution in the melt is governed
by stochastic processes of atoms sticking to or detaching from a nucleus, the evolution of f(a, t) is
governed by a Fokker-Plank equation given by,

@f(a, t)

@t
= � @

@a

✓
Af(a, t)�B

@f(a, t)

@a

◆
, (2.1)

where both A and B are in general functions of size “a”. The Fokker-Plank equation can be written
as

@f(a, t)

@t
= �@J(a, t)

@a
(2.2)

where

J = Af(a, t)�B
@f(a, t)

@a
(2.3)

Is the flux of nuclei in size space. The units of J are #/m
3
/s (number of nuclei per volume per second

that pass through size ”a”), while the units of f are #/m
4.
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The functional relationship between the A and B parameters can be found by considering what
happens in equilibrium. In that situation the J = 0 since nuclei simply fluctuate into and out of
existence over some fluctuation time scale since both solid and liquid can coexist at equilibrium. In
this situation, statistical mechanics informs us that for small values of a the distribution of nuclei is
given by

fo(a) / e
�

Rmin(a)
kBT , (2.4)

where

Rmin(a) = �
8⇡�

3acr
a
3 + 4⇡�a2 (2.5)

is the familiar work of forming a nucleus of size “a” 1. Here, � is the surface energy of a solid-liquid
interface and acr is the critical size of nucleus referred to above 2. Substituting Equation (2.4) into
Eq. (2.3), with J = 0, gives

A = � B

kBT
R

0
min(a) (2.6)

where R
0
min(a) in Eq. (2.6) denotes di↵erentiation with respect to a.

It is instructive to consider Rmin(a) a little deeper to facilitate the calculations that follow. It
contains two terms, the first being the change of bulk (i.e. volumetric) free energy in transforming a
spherical liquid of radius a to solid nucleus of the same radius, while the second term is the surface
energy of maintaining an interface between said nucleus and the liquid. The quadratic (surface) term
dominates at low sizes, while the cubic (volumetric) term dominates at large sizes. Figure (2.1) shows
a plot of Rmin(a/acr) as a function of size a/acr, showing a maximum where the aforementioned e↵ects
cross over. This defines the maximum radius a = acr. To make some of the algebra that follows
tractable, we will be using the second order expansion of Rmin(a) around a = acr, given by

Rmin(a) ⇡
4

3
⇡�a

3
cr � 4⇡ (a� acr)

2 (2.7)

This approximation of Rmin(a) is shown superimposed on top Rmin(a) in Fig. (2.1).
Very rapidly following a quench to a meta-stable [liquid] state, a steady state is attained, whereby

the flux J approaches a constant; this means that the flux of nuclei from smaller to larger sizes is
constant across all sizes (up to an upper value we’ll discuss later). Denoting this steady state flux by
J = s, gives

s = Af(a, t)�B
@f(a, t)

@a
= constant (2.8)

We will see later that A will be seen later to play a role of a nuclear ”velocity” coe�cient, and B a
nuclear ”di↵usion” coe�cient. At sizes below the critical (stable) size, nuclei appear at larger sizes
through di↵usive fluctuations in size space controlled by the second term in Eq. (2.8), while for sizes
above the critical size threshold, nuclei appear predominantly through the constant forward growth
rate of those post-critical nuclei that have managed to grow past a = acr (again, up to some maximum
size that where a grain can still be called a nucleus). More on this later. Right now, let us explore
the properties of Eq. (2.8) with the aim of working out a tractable expression for s.

1
The work of formation is defined as the change of free energy required to change required to a spherical volume of

radius a from liquid to solid. This is given by Rmin(a) = (4⇡a
3
/3)�G+ (4⇡a

2
)�, where �G is the exothermic enthalpy

of formation of a solid and � is the solid-liquid surface energy. The critical nucleus is found by the extremum of Rmin(a),

which is straightforward to do and gives acr = �2�/�G. Substituting �G = �2�/acr into Rmin(a) gives Eq. (2.5).
2
The normalization of Eq. (2.4) is given by a

2
cr⇢s⇢L [20], where ⇢s and ⇢L are the densities of the solid and liquid,

respectivley. This expression will be deduced later when we consider nucleation from a more microscopic perspective.
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Figure 2.1: Blue curve: work of formation of a nucleus Rmin(a/acr) versus of size a/acr. Orange curve:
expansion of Rmin(a) around the the critical nucleus size.

To proceed further, Eq. (2.4) can be used to give dfo/da = �
⇣
R

0
min(a)/kBT

⌘
fo, which allows us

to re-write Eq. (2.8) for s as

�B fo
@

@a

✓
f(a)

fo(a)

◆
= s (2.9)

Integrating Eq. (2.9) gives
f(a)

fo(a)
= �s

Z
a

da
0

B fo(a0)
+D (2.10)

The constant D can be found by imposing sensible boundary conditions on the nuclear distribution
f(a). In particular, we expect that even for T < Tm (Tm is the melting temperature), the size
distribution f(a, t) should give similar statistics to the equilibrium distribution fo(a) at small a, since
nuclei appearing and disappearing in this regime resemble equilibrium-like fluctuations of a metastable
liquid. Mathematically, this is expressed as

f/fo ! 1, as a! 0 (2.11)

On the other end of the size spectrum, we clearly do not expect that the number density of nuclei
at sizes larger then the critical size a = acr can be given by fo(a). This can be seen quite clearly
in Fig. (2.2) which plots the equilibrium size distribution in Eq. (2.4), using Eq. (2.5). While fo(a)
makes perfect sense at small values of a/acr, it is nonsense in the range a > acr, as we certainly do not
expect an ever-increasing probability of large nuclei to somehow emerge as a � acr. Indeed, this is
precisely because the steady state nucleus size distribution we seek, f(a), describes a non-equilibrium
situation, where the number density of nuclei emergent in the liquid beyond a = acr does not follow
equilibrium fluctuation theory. Indeed, in this range the predominant mechanism for nuclei to appear
at sizes larger than a = acr is through the steady forward growth of the small number of “lucky”,
or so-called post-critical, nuclei that have managed to grow, through random fluctuations, through
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Figure 2.2: Plot of the equilibrium nucleus size distribution fo(a) as a function of size a. The normal-
ization constant has been set to one.

the size a = acr. These considerations imply that f/fo ⌧ 1, for a > acr. This condition is most
practically satisfied by setting the large-size boundary condition of f(a) to

f(a)/fo(a)! 0, as a/acr !1 (2.12)

Applying the boundary conditions Eq. (2.11) and Eq. (2.12) to Eq. (2.10) gives a closed form for the
nuclear size distribution under state conditions, i.e.,

f(a)

fo(a)
= s

Z
1

a

da
0

B fo(a0)
(2.13)

with s (the steady state flux of nuclei in the direction of increasing size) given by

s =

⇢Z
1

0

da
0

B fo(a0)

�
�1

(2.14)

As a reminder, it is recalled that the steady state flux has units of nuclei per unit volume per unit
time, i.e., [s] = #/(m3

s).
An explicit form for s can be approximated by replacing Rmin(a) in fo by its expanded form in

Eq. (2.7). The di↵erence is small as shown in Fig. (2.3). This approximation simplifies Eq. (2.14) to
the more tractable –and illuminating– form of a Gaussian integral, i.e.,

s = fo(acr)

8
><

>:

Z
1

0

e
�

4⇡�(a0�acr)
2

kBT

B
da

0

9
>=

>;

�1

(2.15)

Since the 1/fo(a) decays exponentially, it is reasonable to approximate the [as yet unknown] function
B(a) in the integrand of Eq. (2.15) as a constant, B(a) ⇡ B(acr), which can then be removed out of
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Figure 2.3: Comparison of the inverse of equilibrium nucleus size distribution, 1/fo(a) using Rmin(a)
in Eq. (2.5)(Blue) and its expansion in Eq. (2.7) (orange). For simplicity, � and kBT have been set
to one.

the integral in Eq. (2.15). This then gives

s = fo(acr)B(acr)

(Z
1

0
e
�

4⇡�(a0�acr)
2

kBT da
0

)
�1

(2.16)

Making a change of variables in Eq. (2.16) from a
0 to ⌘ = a

0 � acr gives

Z
1

0
e
�

4⇡�(a0�acr)
2

kBT da
0 =

Z
1

�acr

e
�

4⇡�⌘
2

kBT d⌘ ⇡
Z

1

�1

e
�

4⇡�⌘
2

kBT d⌘ =

s
kBT

4�
, (2.17)

We can thus finally approximate the steady state flux of nuclear sizes, s, by

s = 2

r
�

kBT
fo(acr)B(acr) (2.18)

Figure (2.4) shows a plot of f(a/acr)/fo(acr) using Eq. (2.13) with s given by Eq. (2.18), where the
approximation B ⇡ B(acr) has been made in the integrand of Eq. (2.13), and where we have set
�/kBT = 1 for convenience.

It is noteworthy that Eq. (2.8) shows that a steady state flux s that is constant at all sizes (up to
some size beyond a = acr) and can also be represented at any size a as a sum of two contributions,
f(a) and its derivative, weighted by the constants A and B, respectively. Figure (2.4) shows that for
a < acr, both terms can generally contribute to the flux. However, for a > acr, the derivative of f(a)
becomes negligible compared to the f(a) itself and the flux is represented at any general value of a as

s ⇡ A(a)f(a), (2.19)

This can also be seen by the following argument: The derivative term in the flux J in Eq. (2.3) is
akin to a di↵usive term in size space, i.e. it represents random, di↵usive-type, jumps in size space
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Figure 2.4: Comparison of the nuclear size distribution f(a/acr)/fo(a/acr) in Eq. (2.13) with B = 1
(blue) and the equilibrium nucleus size distribution, fo(a/acr) (orange). The distribution f/fo has
been scaled by a factor of 1/10 to make the two plots visible on the same axes, and the normalization
in fo has been set to one.

that “ride down” the gradient of f(a). However, for a > acr, very few nuclei jump from a ! a+ �a

through such random di↵usive jumps in size. Indeed, nuclei appear in this regime due to the constant
forward growth rate of a few post-critical nuclei (i.e. crystals), a very di↵erent mechanism. We can
thus neglect the derivative term in J , leading to form of s given by Eq. (2.19). Comparing the units of
f (1/m4) and the units of flux (1/m2

s), we can deduce that A has units of velocity, which suggests that
A(a) corresponds to the growth rate of stable crystals, which is typically found to scale in proportion
to the their size according A(a) / (a�acr). It is noted that while A increases with a, its multiplication
by a decreasing number density f(a) can still maintain s constant, at least up to some size a

⇤
> acr

where it even makes sense to speak of “nuclei” 3.

2.1.1 Determination of mesoscale coe�cients A and B in the size flux

Equation (2.18) gives an an explicit form for computing the steady state di↵usion rate. But to
do so, we first need a form for B(acr). It turns out that the is a quantity that can be calculated
from mesoscale models of the growth of post-critical particles, which we can tackle with mean field
arguments or computer simulation, without needing to explicitly resort to microscopic considerations.
This is discussed further in this sub-section.

Calculating R
0

min(a) and substituting it back into Eq. (2.6) gives

B(a) =
kBT

8⇡�

A(a)

(a� acr)
(2.20)

3
This argument tacitly assumes that f(a) represents only the decreasing density of nuclei that grow through di↵usive

fluctuations in size space up to some maximum size a
⇤
> acr, which most theories of nucleation leave unspecified, and

after which they generally set f(a > a
⇤
) = 0. Practically, the distribution f(a) can be approximated as a small, but

finite, constant for the size range acr < a < a
⇤
, to reflect the fact that there is a constant number of nuclei in any given

volume (in a system of infinite size) since there is a constant number per volume/time passing a = acr and vanishing

beyond a = a
⇤
, under steady state nucleation conditions.
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We next assume that the “nuclear velocity” coe�cient A(a) can be deduced analytically or com-
putationally from models that can track the growth rate of crystal size, ie. da(t)/dt, through the
form

A(a) =
da(t)

dt
⇡ g(acr)(a� acr), as a! acr (2.21)

where the proportionality constant g(acr) is added to create a concrete place holder for a quantity to
be computed from some kinetic growth model of a process of interest. Substituting this form of A(a)
into Eq. (2.20) gives

B(acr) =
kBT

8⇡�
g(acr) (2.22)

In the case of vapour nucleation, B(acr) can be calculated by considering the hydrodynamics of
vapour growth. In the case of nucleation from solid-phase (i.e solid-state precipitate) or solidification,
nucleation, we can consider mass transport of solute di↵using across a moving [spherical] interface to
and from the surrounding matrix.

2.2 Classical Nucleation Theory From a Microscopic Perspective

The previous section examined nucleation as a stochastic process in size space and defined the nucle-
ation rate in terms of coe�cients (A and B) that could be in principle deduced from mesoscale models
of particle growth. This is a powerful technique that is in keeping with the spirit of mean-field type
theories, which deduce microscopic properties from emergent or ”slow” quantities that define their
mesoscale behaviour. It is instructive however, to re-consider nucleation from a microscopic perspec-
tive that considers the growth rate of nuclei specifically through atomic attachment kinetics. This is
done next.

2.2.1 Preliminaries

We begin by getting some definitions out of the way. The first is the volume v of a unit grain, which
is considered to be one atom big, i.e. the atomic volume. The second is the surface area S of said unit
grain, which is the atomic surface area. Clearly, we are considering a purely classical picture of atoms
here, which su�ces the study of physical kinetics. Of these two quantities only v is “fundamental” as
S can be expressed in terms of the molar volume through the atomic radius as

S = (36⇡)1/3v2/3 (2.23)

It is also noted for future reference that the atomic volume v is related to the solid density by ⇢s = 1/v;
the liquid density will be denoted by ⇢L.

Let’s re-visit the work of formation of a nucleus of radius am given by Eq. (2.5). This quantity
can be expressed in terms of the number of atoms, n, in a cluster of radius a. Specifically, the volume
of a cluster of size a, denoted by Va, is given by

Va = 4⇡a3/3 = vn, (2.24)

which makes the surface area of the cluster, denoted by Aa,

Aa = 4⇡a2 = Sn
2/3

, (2.25)

In terms of v and S, Eq. (2.5) can thus be recast as

Rmin(n) = vn�G+ Sn
2/3
� (2.26)
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The number of atoms in a critical nucleus, ncr, is found by the extremum of Eq. (2.26), which gives

ncr =

⇢
2S �

3v (��G)

�
, (2.27)

where the minus is associated with �G, which is inherently negative in an an exothermic reaction like
solidification, condensation, etc. Using the definitions of the quantities above, it is also straightforward
to write ncr as

ncr =
4⇡

3
a
3
cr⇢s (2.28)

The two expressions for ncr will be useful in that follows.
Another important quantity that we will emerge in our calculations that follow is the so-called

Zeldovich number, Z, which often discussed in the nucleation literature. It is related the curvature of
the work function Rmin(acr) and is proportional to the rate at which a post-critical can fluctuate back
below the critical size acr. The Zeldovich number is defined by

Z =

 
� 1

kBT

d
2
Rmin

dn2

����
ncr

!1/2

(2.29)

Taking the second derivative of Eq. (2.26), substituting n
⇤ form Eq. (2.28) and using Eq. (2.23) gives,

Z =

✓
4⇡

81

◆1/6✓ 2�

kBT

◆
⇢
�1/3
s (ncr)

�2/3 (2.30)

This can be re-cast in an alternative form by eliminating � through the relation acr = 2�/ (��G).
Substituting this into Eq. (2.30) gives after some trivial algebra,

Z =

p
3

4⇡

 �
��Ḡ

�

kBT

!1/2
1

⇢sa
3
cr
, (2.31)

where here �Ḡ is the total work of formation of a nucleus of radius a = acr (i.e., [Ḡ] = J).

2.2.2 Non-equilibrium attachment kinetics governing the growth of nuclei

With the above definitions and quantities out worked out, we now turn our attention to the kinetics
of nuclei growing through the random attachment/detachment (called “condensation” and “evapora-
tion”) of atoms onto their surface. We denote by Ng the density (number/volume) of crystal nuclei
containing g atoms, under general conditions of non-equilibrium. We denote by Cg the rate at which
one atom jumps from the liquid to the a nucleus of size g, turning it into, by virtue of this jump, a
nucleus of size g + 1. Similarly, we denote by Eg the rate at which one atom jumps o↵ a nucleus of
size g (i.e., into the liquid), turning it into, by virtue of this jump, a nucleus of size g � 1. The net
rate of nuclei jumping from size g ! g + 1 is given by

Ig = CgNg � Eg+1Ng+1, (2.32)

which is the di↵erence of how many nuclei increase past size g (by one atom) minus how many nuclei
fall back from size g + 1 to g. Similarly Ig�1 gives the ate of change of nuclei from size g � 1 ! g

Form Eq. (2.32), we note that a positive value for Ig or Ig�1 implies that there is a net increase in
the number of nuclei (per volume) growing from the smaller size to the larger size. The time rate
of change of the nucleus density at the size g is thus given by by the di↵erence of the number (per
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volume) of nuclei jumping from a smaller size (g� 1) to g minus the number (per volume) leaving the
size g and jumping to size g + 1, i.e.,

dNg

dt
= Ig�1 � Ig, (2.33)

Equation (2.33) can be seen as a microscopic transport equation that gives us the rate of change of
Ng due as a di↵erence in rate entering compared to leaving the size g. Its di↵erential form implies
we can use it to describe the change of Ng due to individual atomic jump events (i.e. dt is on the
order of individual atomic vibration times), which is why the rates Ig can be bases on the jump rate
of individual atoms onto/o↵ a nucleus.

2.2.3 Equilibrium steady state conditions

In equilibrium, Ng satisfies dNg/dt = 0, and represents a statistically unchanging distribution, which
we denote by ng. Under these conditions, Eq. (2.33) satisfies

Cgng = Eg+1ng+1 (2.34)

Equation (2.34) is satisfied by a form ng proportional to Eq. (2.4), except with a slightly di↵erent
normalization used in ng to describe the number of nuclei per unit volume, i.e.,

ng = ⇢Le
�Rmin(g)/kBT

, (2.35)

where it is recalled that ⇢L is the density of liquid. Equation (2.35) gives the total number of atomic
sites of the liquid that are likely to become site to host a nucleus of size g, under equilibrium conditions.
As discussed above, this form can only be assumed to hold over some range 0 < g < g

⇤, where g⇤ > gcr

and gcr is the number of atoms in a nucleus of critical size a = acr.

2.2.4 Non-equilibrium steady-state conditions

Under non-equilibrium, but steady-state, conditions that exist following some transient time after a
thermodynamic driving force is applied to bias nuclei to grow from smaller to larger sizes (i.e. to
initiating a first order phase transition), there is a uniform non-zero flow rate, I, of nuclei at all sizes
g (up to the aforementioned post-critical size, which for consistency of notation we denote in this
sub-section as g

⇤), after which the distribution of nuclei can be assumed to go to zero. This implies
that

Ig = I = Cgfg � Eg+1fg+1 = constant, for all 0 < g < g
⇤ (2.36)

where we have denoted by fg the non-equilibrium steady state distribution, to avoid confusion with
ng and Ng defined previously.

To proceed, we algebraically re-manipulate Eq. (2.36) to the form

I = Cgng

⇢
fg

ng

� Eg+1 fg+1

Cg ng

�
(2.37)

Using Eq. (2.34) reduces Eq. (2.37) to

I = Cgng

⇢
fg

ng

� fg+1

ng+1

�
(2.38)

Denoting ⇤(g) ⌘ fg/ng and ⇤(g + 1) ⌘ fg+1/ng+1, and noting that g ! g + 1 can be be represented
as g ! g + �g, where �g/g ⌧ 1, allows us to re-write

fg

ng

� fg+1

ng+1
! �d⇤(g)

dg
(2.39)
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Thus, the microscopic rate equation in Eq. (2.37) ca be can as the following di↵erential equation,

I

Cgng

= � d

dg

✓
fg

ng

◆
(2.40)

or, alternatively, in the slightly more illuminating form

I = Cgng

⇢
� d

dg

✓
fg

ng

◆�
(2.41)

In what follows, we will expand on the term in the brackets and show that that is where the Zeldovich
number comes from as a multiplicative correction to the more traditional pre-factor, which we’ll see
is just gives standard (i.e., uncorrected) rate of post-critical nuclei.

Equation (2.40) is next integrated from g = 1 (i.e. a 1-atom “cluster”) to some g = G > gcr, which
yields

fG

nG

� f1

n1
= �

Z
G

1

✓
I

Cgng

◆
dg (2.42)

Equation (2.42) is simplified by noting that: (a) I is constant; (b) fG/nG ⌧ 1, or practically fG ⇡ 0
as alluded to above; (c) the distribution of nuclei at the smallest sizes approximates the equilibrium
distribution, f1/ng ⇡ 1. Thus, Equation (2.42)

I = �
⇢Z

G

1

✓
1

Cgng

◆
dg

��1

(2.43)

It is recalled that ng in Eq. (2.43) is given by Eq. (2.35), while Cg is the rate at which atoms in the
liquid attach to a nucleus of size g. This depends on the rate of atomic vibrations in the liquid, denoted
⌫o, the probability that an atom can actually overcome the energy barrier �GA required to integrate
itself into the solid at the solid-liquid interface and the number of surface sites available around the
nucleus of size g, which is given as the are of the cluster divided by the atomic surface S area defined
previously (it is assumed can all act as attachment sites in a pure substance). Explicitly, the form of
Cg is

Cg = ⌫o ⇥ e
��GA/kBT ⇥ g

2/3 (2.44)

This expression g
2/3 can be recast with the aid of Eq. (2.25) and Eq. (2.23) as

g
2/3 =

✓
16⇡2

9

◆
a
2
⇢
2/3
s , (2.45)

where a is the radius of a g-atom nucleus and where it is recalled that v = 1/⇢s. Substituting Eq. (2.45)
into Eq. (2.44) gives Cg as

Cg =

✓
16⇡2

9

◆
a
2
⌫o⇢

2/3
s e

��GA/kBT (2.46)

To proceed further, we note from Eq. (2.35) and inspection of Fig. 2.3 that 1/ng is sharply peaked
around the critical nucleus size, i.e., g = gcr and decays exponentially away from the peak. We can
thus expand Rmin(g) to second order around gcr, yielding

Rmin(g) = Rmin(gcr) +
1

2

d
2
Rmin(g)

dg2

����
gcr

(g � gcr)
2 · · ·

⇡ Rmin(gcr)�
Q

2
(g � gcr)

2 · · · , (2.47)
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where we have defined Q = R
00

min(gcr) for convenience. Substituting the second line of Eq. (2.47) into
1/ng in the integral on the RHS of Eq. (2.43) gives

Z
G

1

✓
1

nGCg

◆
dg =

Z
G

1

0

@e

Rmin(g)
kBT

⇢LCg

1

A dg ⇡

0

@e

Rmin(gcr)
kBT

⇢LCgcr

1

A
Z

G

1
e

�Q

2kBT
(g�gcr)

2

dg (2.48)

The last integral in Eq. (2.48) is approximated by a standard Gaussian integral from �1 to 1 by
making a change of variables ⇠ = g � gcr, which changes the limits to g = 1 ! ⇠ = 1 � gcr ⌧ 0 and
g = G! ⇠ = G� gcr � 0. This gives,

Z
G

1

✓
1

nGCg

◆
dg ⇡

0

@e

Rmin(gcr)
kBT

⇢LCgcr

1

A
s

2⇡kBT

Q
, (2.49)

as a result of which Eq. (2.43) finally becomes,

I = ⇢LCgcr e

Rmin(gcr)
kBT

s
�R00

min(gcr)

2⇡kBT
, (2.50)

The square root is equal to the so-called Zeldovich number and was derived in Eq. (2.30) (where
ncr ! gcr). Substituting the relation gcr = (4⇡/3)a3cr⇢s and Eq. (2.46) for Cgcr gives after some trivial
algebra,

I = 2

✓
�

kBT

◆1/2
(✓p

⇡

36

◆1/3
⌫o

a2cr⇢
4/3
s

e
��GA/kBT

)n
a
2
cr⇢s⇢Le

�Rmin(gcr)/kBT

o
, (2.51)

The expression in Eq. (2.51) has been manipulated intentionally in a form that is comparable to
Eq. (2.18) for the nucleation rate derived previously using mesoscale considerations. It is evident that
the second bracketed factor in Eq. (2.51) corresponds to B(acr) while the factor in the last bracket of
Eq. (2.51) corresponds to fo(acr).

2.3 Nucleation in a Binary Mixture

The nucleation rate theory applied in the previous sections of this chapter assumed a pure substance
when evaluating the work of formation and any other thermodynamic quantity. The physical kinetics
we considered throughout, however, are to lowest order independent of whether nucleation occurs in
a liquid of a pure substance or a solution that is a mixture. This last section of this chapter adapts
the expression for the steady state nucleation rate to the metastable liquid in a binary alloy, which
amounts to formulating the work of formation of a critical nucleus for a binary mixture, denoted in
this section by �F

⇤. The steady state nucleation rate in a metastable liquid of a binary mixture is
given by a form analogous to Eq. (2.50), adapted here to match the form frequently shown in the
literature, i.e.,

J = ⇢L�
⇤
Z exp(��F

⇤
/kT ), (2.52)

where ⇢L is the usual nucleation site density, �⇤ ⇠ Cg⇤ is a frequency factor proportional to the inverse
of characteristic nucleation time, Z is the Zeldovich factor and k is the Boltzmann constant.
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2.3.1 Work of formation in a binary mixture

Consider a large closed thermodynamic system of volume V containing a homogeneous undercooled
liquid phase in contact with a thermal reservoir at temperature T . Let fL(c, T ) be the composition and
temperature-dependent free energy density of this liquid. Similarly, let fs(c, T ) be the composition
and temperature-dependent free energy density of the solid phase whose nucleation we are considering.
These free energy curves are illustrated for typical metallic alloys in Fig. (2.5). Figure 2.5 shows a
typical composition dependance of fL for a binary alloy at a fixed temperature. Notice that in order
for the liquid to be in a metastable state, its composition c0 must be smaller than the coexistance
liquid composition, ceq

L
, obtained via the common tangent construction with the solid phase curve.

Thus, the initial free energy of the system is

F0 = fL(c0, T )V. (2.53)

Figure 2.5: Typical forms for the free energy of a liquid or solid binary alloy mixture.

Now consider that in the bulk liquid, a fluctuation gives rise to small spherical solid nucleus of size
VN and composition cN (see Fig. 2.6). The free energy of the system is now written as
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Figure 2.6: Nucleation event

F = fS(cN , T )VN + fL(c
0

L, T )(V � VN ) + �AN , (2.54)

where fS is the extensive free energy of the solid, � is the solid-liquid interfacial energy (here we
consider it to be to be orientation independent), AN is the surface area of the nucleus and c

0

L
is the

composition of the liquid after the nucleus has been formed; it is di↵erent from c0 because cN < c0

and the average composition for the whole system must remain constant. Since we are assuming that
the transformation is isothermal, it is convenient to drop the explicit dependence of temperature in
the equations. Moreover, since the we are considering an isothermal system at fixed total volume, the
associated work of formation of the nucleus is equal to the change in free energy, i.e.,

�F = F � F0

= fS(cN )VN + fL(c
0

L)(V � VN ) + �AN � fL(c0)V

= [fS(cN )� fL(c0)]VN + [fL(c
0

L)� fL(c0)V ](V � VN ) + �AN . (2.55)

In the equation above it is also implied that the density of the solid nucleus is the same as the liquid.
We also have the solute conservation equation, which is a consequence of considering a closed system:

c0V = cNVN + c
0

L(V � VN ) (2.56)

Since the system is large, VN ⌧ V and c
0

L
is close to c0. Therefore, we can write fL(c0L) as an expansion

(to first order) of fL around c0:

fL(c
0

L) = fL(c0) +
@fL

@c

����
c0

(c0L � c0)

= fL(c0) + µL(c0)(c
0

L � c0), (2.57)

where µL(c0) (which from now on we denote as µ0) is the excess chemical potential of the liquid at
c0. Substituting fL(c0L) from (2.57) and V � VN from (2.56) into (2.55) we get

�F = [fS(cN )� fL(c0)� µ0(cN � c0)]VN| {z }
�FB

+ �AN|{z}
�FI

. (2.58)

Note that we can identify two contributions to the change in free energy: the bulk contribution �FB

and the interface contribution �FI . Since the former is associated with the change from a metastable
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phase (liquid) into a stable phase (solid), �FB is always negative. In contrast, �FI is always positive
because it is associated with the creation of an interface. Now, because of the relation between VN

and AN (remember we are considering a spherical geometry) the surface term will always dominate
for small sizes and the bulk term will start to dominate beyond a certain size. Thus, �F as a function
of size will have a maximum which corresponds to the nucleation barrier �F

⇤. The critical nucleus
size V

⇤

N
must satisfy

@�F

@VN

����
V

⇤
N

= 0 (2.59)

But before finding V
⇤

N
and �F

⇤ we still need to specify the concentration selected by the nucleus,
cN . Since nucleation is a fluctuation driven event and thermodynamics tells us that the fluctuation
most likely to occur is the one associated with the smallest cost in energy, we can determine cN by
finding the minimum of �F with respect to the concentration in the solid. Since the dependence of
�F on cN is only on the bulk part, minimizing �F is equivalent to minimizing �fB = �FB/VN or,
alternatively, maximizing DF ⌘ ��fB which we can express as

@DF

@cN
= 0, (2.60)

where DF is the called the thermodynamic driving force for nucleation and it is proportional to the
undercooling of the original liquid phase. Obtaining DF from (2.58) and solving (2.60) give us

@fS

@cN
= µS(cN ) = µ0, (2.61)

where µS(cN ), which from now on we denote as µN is the solid excess chemical potential at concentra-
tion cN . Eq. 2.61 states that the selected nucleus concentration cN is such that the chemical potential
of the solid and liquid phases is the same. We can write now the driving force for nucleation as

DF = [fL(c0)� µ0c0]� [fS(cN )� µ0cN ]

= �(!S(cN (µ0))� !L(c0(µ0)))

= ��!B(µ0), (2.62)

where !J(µ0) (J = S,L) is the grand potential density of each phase evaluated at µ0, the chemical
potential of the unstable liquid. 4. Graphically, the driving force for nucleation is represented in figure
2.7. Note that the condition that µN = µ0 means that the slopes of the lines tangent to fS(cN ) and
fL(c0) are the same. However, these lines have di↵erent intercepts.

4
At this point it is important to clarify the distinction between the physical meaning of �fB and �!B to avoid

confusion. �fB refers to the total change in bulk free energy of the entire system associated with the creation of the

nucleus divided by the nucleation volume, whereas �!B refers to the di↵erence of the igrand potential density (grand

potential per unit volume) between the solid and that of the original liquid phase.
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Figure 2.7: Graphical representation of driving force for nucleation.

We now write equation (2.58) as

�F = �!BVN + �AN . (2.63)

Finally, finding the maximum of �F with respect to VN (according to (2.59)) gives us the critical
nucleus size, which, in terms of its radius R⇤, is given by

R
⇤ = � 2�

�!B

, (2.64)

and the free energy barrier �F
⇤,

�F
⇤ =

16⇡�3

3�!2
B

. (2.65)
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Chapter 3

Phase Transformation Kinetics

Nucleation leads to post-critical [stable] particles that grow into the liquid (or a solid matrix in solid
state transformations). Their growth kinetics and interaction is ultimately what determines the final
microstructure of a system. The word “microstructure” has become a catch-all word that encompasses
the amount of, types and patterning of stable phases that emerge in a phase transformation. The
first two sections of this chapter examine the kinetics of first order phase transformations in a binary
alloy under two conditions. The first is one wherein particle growth is determined predominately by
supersaturation, or thermodynamic driving force, and curvature e↵ects can be ignored. Moreover, in
this regime, growth is not a↵ected very much by any conservation law (e.g. conservation of mass)
that may apply to the system. This can, for example, describe magnetic domain growth in the Ising
model, or solidification in a highly supercooled liquid of a pure substance. The second situation
examined is one where particle growth is driven by supersaturation at early time but transitions to
curvature-driven growth at late times. In the latter regime, any conservation law that are applicable
must be taken into consideration in calculating the particle growth dynamics. This situation is a good
description of particle coarsening out of a homogeneous two-component mixture.

3.1 Supersaturation-Driven Grain Growth

We begin by considering the fraction of a stable phase (denoted here by ↵) that grows into and
consumes a metastable phase (denoted here by �) as a function of time in a first order phase transition.
To maintain consistency with previous chapter we will continue to use the language of solidification
of a binary mixture (alloy) here, although the arguments presented here hold for any first order phase
transformation. The previous chapter derived the rate at which post-critical nuclei of a metastable
first phase appear. It is thus expected that the fraction of ↵ created, denoted fs, should be a function
of the particle nucleation rate and the growth rate of post-critical nuclei, which we will denote by v.
The solid fraction at time t can be written as

fs(t) =

Z
t

0
dt

0
I(t0)

✓
4⇡

3
R

3(t, t0)

◆
, (3.1)

where I(t) is the nucleation rate, which we saw is constant for homogeneous nucleation, and R(t, t0) is
the average radius of a grain at time t, which has been growing since the time t0 when it was nucleated
from the metastable phase 1. To progress further, we next need to derive the form of R(t, t0).

1
It should be noted here that Eq. (3.1) is really only true when grains grow under a constant driving force and don’t

interact. As a result, the theory presented in this sub-section is only reasonable for domain coarsening in systems like the

Ising model described by a so-called order parameter that need not be conserved, thus allowing for grains can completely
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A cardinal rule of non-equilibrium phase transformations is that the local speed of a two-phase
interface (e.g. a solid-liquid interface in solidification (or a solid-solid interface in solid state precipi-
tation) is proportional to the di↵erence of an appropriate thermodynamic potential (e.g. free energy
or grand canonical potential, etc) between the stable and metastable phases, i.e.,

v / �Gdrive, (3.2)

where for the case of solidification that we have been considering �Gdrive is proportional to under-
cooling for the case of solidification/precipitation of a pure material (i.e. ⇠ T � Tm, the di↵erence
between the quench temperature and the melting temperature). For solidification/precipitation of
binary mixtures, the driving force is proportional to the supersaturation at a particular temperature
of interest. Supersaturation can be determined from the equilibrium phase diagram such as that in
Fig. 3.1, which is typical of dilute metal alloys that we’ll be considering in what follows 2. Since the

Figure 3.1: Typical phase diagram of a two-component metal alloy containing elemental species A-B,
at dilute concentrations of the solute B. The regions above and below the slanted lines are single
phase regions, denoted � and ↵, respectively. At temperatures between the slanted lines the system
coexists as two phases ↵ + �. The lines defined by the concentrations where the horizontal dashed
lines cut through the coexistence region (e.g., (Ceq

�
, C

eq
↵ ) and (Ceq

�(o), C
eq
↵(o))) are known as tie lines,

which are used to determine the equilibrium concentrations of each phase at a given temperature, as
well as the solid/liquid fraction at equilibrium.

undercooling or supersaturation (let’s denote it � in both cases) is constant, we expect that for a

consume the metastable phase. It can also be a reasonable description for solidification of a rapidly solidified material

for which the density or solute di↵usional interactions range is short (⇠ nm). For slowly quenched systems constrained

by a conservation law, however, grains will eventually interact via their solute di↵usion fields as the system approaches

equilibrium and this theory become invalid.
2
Quenches from temperature To to to T1, T2, etc, lead to nucleation and growth of ↵ phase from � phase. At

any temperature T , the driving force �Gdrive = !L(T ) � !eq(T ) where !L(T ) is the grand canonical potential of the

metastable liquid and !eq(T ) is the corresponding equilibrium value of the system. It is straightforward to show that

for dilute binary alloys, �Gdrive / � where � / (Co � C
eq
↵ )/(C

eq
�

� C
eq
↵ ) is the supersaturation, with Co being the

average system concentration and C
eq
↵/�

the equilibrium concentrations of the ↵/� phases. For more details on alloy

thermodynamics the reader is referred to Chapter 6 of Ref. [26] and Section 1.7.2 of these notes.
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typical particle

v =
dR

dt
/ �Gdrive = constant =) R ⇠ v t, (3.3)

Thus, a grain that has been growing from time t
0 to time t will satisfy

R(t, t0) = v(t� t
0) (3.4)

Substituting Eq. (3.4) into Eq. (3.1) and noting that I is constant yields

fs(t) =

✓
4⇡

3
I

◆Z
t

0
dt

0
v
3 (t� t

0)3dt0, (3.5)

Equation (3.5) is a little too simplistic as it assumes that there is always an infinite amount
of liquid volume within which post-critical nuclei can continuously grow and/or nucleate, which is
clearly nonsense in a finite size system. In fact, the liquid (or, more generally, metastable phase �
using notation of Fig. (3.1)) fraction available for new grains to grow and/or nucleate into shrinks
with time. Moreover, by changing the lower limit of the integral in Eq. (3.5) to to, and the upper limit
to to + dt, Eq. (3.5) can be more accurately seen as representing incremental change in solid fraction
between to ! to+dt. Thus, if we now denote by Xs the true solid fraction, the change (i.e. increase) in
dXs is equal to the incremental amount of solid dfs generated in the liquid multiplied by the available
fraction of liquid denoted XL = 1�Xs, i.e., dXs = XL dfs. Integrating this last di↵erential gives

Z
t

0

dXs

1�Xs

=

Z
t

0
dfs, (3.6)

which can be solved to give

Xs(t) = 1� e[�(
4⇡
3 I)

R
t

0 dt
0[v (t�t

0)]3dt0] (3.7)

It is emphasized that Eq. (3.7) is only approximate. It assumes a simple e↵ective spherical geometry
of growing particles and, as was mentioned above, non-interacting particles. In reality, particles take
on di↵erent geometries (rods, dendrites, discs, polyhedra, etc). Moreover, the fact that particles do
interact at late times implies that Eq. (3.7) is really only accurate over early to (at best!) intermediate
times of the phase transformation. Note that Eq. (3.7) does not assume that particles grow at constant
speed, which is a good thing, since it turns out that particle speed can go through a transient phase
depending on its geometry. Nevertheless, it is not too bad an approximation to assume that in the
mean-field sense, v ⇠ constant.

The importance of Equation (3.7) lies in its generic or “universal” features. Namely, it predicts
that the time dependence of a first order phase transition proceeds according to a stretched exponential
whose time exponent is of the form d+1, where d is the dimension of space, and where the time scale
of the exponential is inversely dependent on the homogeneous nucleation rate and the cube of the
growth rate. It turns out that these universal features are also born out experimentally, where it is
generally observed that

Xs(t) = 1� e�const.⇥t
d+1

(homogeneous nucleation) (3.8)

The qualification “homogeneous nucleation” is specified in Eq. (3.8) since we have thus far only
considered homogeneous nucleation. Most practical phase transformations are, in fact, governed by
heterogeneous nucleation. To model this process, the heterogeneous nucleation rate changed from a
constant to

Ihet = N�(t), (3.9)
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where N is proportional to the density impurity or inoculant sites on which nuclei can form. Such sites
so dramatically decrease the barrier for nucleation (by many orders of magnitude!) that heterogeneous
nucleation completely overrides homogeneous nucleation as the selected mechanism by which particles
appear in the liquid. Indeed, except for extremely fast cooling rates, most heterogeneous nucleation
events occur on inoculant sites almost immediately, hence the appearance of the �(t) in Eq. (3.9). It
is straightforward to repeat the above steps using Eq. (3.9) and arrive at the heterogeneous analogue
of Eq. (3.7), which yields a general growth law of the form

Xs(t) = 1� e�const.⇥t
d

(heterogeneous nucleation) (3.10)

To make Eq. (3.8) and Eq. (3.10) quantitative, one typically fits the capture the qualitative feature of
the kinetics of a phase The stretched exponential theories derived above are known as KAMJ growth
laws, after their originators Kolmogorov, Avrami, Meyer and Johnson.

3.2 Grain Growth Dynamics Subject to Mass Conservation

While the KAMJ theories derived above provide a good description of the phase transformation
at early to intermediate time, they become inaccurate at late times as alluded to previously. At
late times particles interact by exchanging mass via their overlapping di↵usion fields; as a result,
mass conservation must be taken into account in the system. Moreover, since the system is close
to equilibrium at late times, the main driving force for the phase transformation now becomes the
reduction of curvature. These two e↵ects, taken together, lead to a situation where smaller particles
di↵use their mass toward larger particles, ultimately leading to a system with a few large particles.
The cartoon in Fig. (3.2) illustrates these idea. This section considers mass di↵usion and interface

Figure 3.2: Typical sequence of particle morphologies when growth is limited by surface tension and
mass conservation. At early times a particle’s growth velocity is approximately constant and particles
grow at a steady rate. When particles start to interact via their solute di↵usion fields, particles
start to coalesce to reduce surface tension. In this growth regime, thermodynamic driving force (i.e.,
supersaturation) is very small and the growth of particles is limited by mass di↵usion proportional to
the di↵erences in curvature between large and small particles. In the end we are left with a few large
particles.

curvature in order to derive a more realistic growth law scaling of particles at late times. Before doing
so, however, we first must digress and consider the physics governing particle growth in a metastable
matrix of a binary alloy more precisely than we’ve done previously.

3.2.1 Conditions controlling the kinetics of a phase boundary in an alloy

Considering the system in the cartoon of Fig (3.2) what must the governing equations for this system
be? To answer this question we assume the system is comprised on the matrix containing some
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distribution of spherical grains of the stable phase. Between the slowly moving (called coarsening)
interfaces that separate the grains from the matrix, conserved mass transport is governed by the usual
di↵usion equation,

@C

@t
= r (DrC) , (3.11)

where C is the concentration field and D is the di↵usion coe�cient, which in general is a function
of the phase; however here we will be considering it a constant here. It is noted that mass di↵usion
through the bulk is typically the slowest process of grain growth and coarsening. Equation (3.11) must
be supplements by two boundary conditions applied at matrix/particle interfaces.

The first boundary conditions relates the velocity of a location on the particle/matrix interface to
the solute flux across the interface according to

�
C

+
int � C

�

int

�
vn = D {rC|

R� · n̂� rC|
R+ · n̂} , (3.12)

where C+
int and C

�

int represent the concentrations on the ↵/�=facing sides of the interface of any particle
and n̂ is a unit vector that normal to a particle and pointing into the matrix by convention, making
the local normal interface speed vn = n̂ ·v, with v being the local interface velocity. Equation (3.12) is
a statement of mass conservation, representing the flux of solute accumulating in the liquid (or solid)
as interface advances to the di↵erence in fluxes toward and away from the interface.

The second boundary condition constrains the interface concentration. Specifically, when the
interface is curved and moving, the local interface concentration deviates from the equilibrium vale
by a correction proportional to the local interface curvature and the local normal interface speed vn.
This e↵ect, known as the Gibbs-Thomson e↵ect is expressed as

C
±

int = C
eq
↵,�
� do�

vn

µ
, (3.13)

where C
eq
↵,�

are the equilibrium concentrations of the ↵/� phases at the quench temperature (see for
example Fig (3.1)), do is the capillary length, a fundamental length scale that described further in
Chapter 6 of the phase field text book. It will simply be treated as a constant here for an ideal, dilute
binary alloy. The constant µ in Eq. (3.13) is the atomic mobility. Except for very large driving forces,
the last term in Eq. (3.13) can typically be neglected for most phase transformations in metals 3.

Eq. (3.11), Eq. (3.12) and Eq. (3.13) are referred to as a sharp-interface model and are used to
describe particle growth in a metastable phase, such as occurs in solidification and other 1st order phase
transformations. An analogous set of equations can be derived for solidification of a pure substance,
the kinetics of which are controlled by the transport of heat. This is done in the next chapter.

3.2.2 Early-time grain growth

Consider a quench to a temperature T = T1 as shown on the left had side of Fig. (3.3). Initially,
a post-critical size particle will start to grow while obeying the sharp interface equations Eq. (3.11),
Eq. (3.12) and Eq. (3.13). The concentration levels at and away from the ↵/� interface is depicted
on the right hand side of Fig. (3.3). Since the solid is initially small, the concentration in the ↵
grain rapidly attains the value predicted by the Gibbs-Thomson relation throughout (not just at
the interface). On the matrix side, however, the concentration follows a characteristic di↵usion tail,
spanning from the Gibbs-Thomson prediction at the interface to the far-field initial value of the matrix.

3
The atomic mobility in metals is typically very large, allowing solute levels on either side of the a two-phase interface

to rapidly attain to their equilibrium values, as predicted by the equilibrium phase diagram.
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In this early-time limit of the growth process, the interface is driven largely by supersaturation and
the phase transformation kinetics are thus governed, approximately anyway, by the model described
in Section (3.1).

Figure 3.3: Solute concentration profiles describing the early-time growth of a precipitated particle of
phase ↵ growing into a matrix phase � at a quench temperature T1. In this time regime, particle growth
is driven predominately by supersaturation of particles with respect to the matrix and curvature e↵ects
on concentration can be neglected. The interface concentration on the matrix side of the particle can
be set to the equilibrium value of the � phase at T1, while the interface concentration on the particle
side can be set to equilibrium value of the ↵ phase at T1. The growth speed vn of a particle tracks
the rate of change of its radius R(t).

3.2.3 Late-time grain growth

We now turn our attention to later times in the grain growth process where the phenomenon of
coarsening starts to occur. To help visualize this process, Fig. (3.4) illustrates an example of a small
particle (↵) growing in s supersaturated matrix phase � during the late-stages of the coarsening process
at a quench temperature denoted T = T2. The matrix can be liquid for the case of solidification, or
solid for the case of precipitation. The left side of the figure shows a phase diagram with the relevant
concentration levels projected onto the corresponding locations on the particles and matrix. Referring
to Fig. (3.4), the concentration within the bulk of the matrix (�) is denoted by C� and is slightly lower
than the equilibrium concentration on the phase diagram because the systems has not yet equilibrated,
and particles are still growing. We next apply the sharp interface equations in Section (3.2.1) to derive
an equation relating the radius R(t) of a small particle coarsening in a slightly undersaturated matrix
at late times, where larger particles grow at the expense of smaller ones.

Assuming spherical symmetry around a particle surrounded by a saturated matrix, and a constant
bulk di↵usion coe�cient, Eq. (3.11) can approximated by

@

@r

✓
r
2@C(r)

@r

◆
⇡ 0, (3.14)
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Figure 3.4: Solute concentration profiles describing the late-time growth of a precipitated particle of
phase ↵ growing into a matrix phase (�) at a quench temperature T2. The equilibrium concentrations
on the ↵/� sides of the interface of a particle are less then the corresponding phase concentrations
given by the phase diagram by a amount proportional to the Gibbs-Thomson curvature correction.
The matrix concentration far from the interface is saturated to a value of C� < C

eq
�
. We define a

supersaturation � = C
eq
�
� C� ⌧ 1 used in the text. (Dips in the concentration at the centres of

particles (“coring”) represent the concentration levels at the early stages of solidification.)

which assumes that solute di↵usion in a quasi steady state. The solution of Eq. (3.18) is

C(r) = �A

r
+D (3.15)

where A and D are integration constants. They are determined through two boundary conditions.
The first is the Dirichlet boundary condition on the matrix side of the precipitating particles,

C(r = R) = C
int(+)
↵ = C

eq
�
� do/R(t), (3.16)

which is the Gibbs-Thomson condition where the velocity-dependent correction in the Gibbs-Thomson
e↵ect has been ignored, which is reasonable for slow processes in metals as µ is typically very large.
The second boundary conditions is

C(r !1) = C� (3.17)

The application of Eq. (3.16) and Eq. (3.17) to Eq. (3.15) gives A = � (�R� do) and D = C� , which
gives the concentration outside the surface of the particle as

C(r) =
(�R� do)

r
+ C� , (3.18)

where we defined � = C
eq
�
� C� , which is proportional to the supersaturation, the thermodynamic

driving force for the growth of particles.
To arrive an equation governing R(t), we substitute Eq. (3.18) into Eq. (3.12), yielding

�Ceq vn = �D @C

@r

����
↵int(+)

=
D

R

✓
�� 1

R

◆
, (3.19)
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where we have neglected di↵usion on the particle side of the interface since C
int(�)
↵ ⇡ C

eq
↵ throughout

as coarsening particles tend to be small. Also, we have approximated C
+
int�C

�

int ⇡ �Ceq = C
eq
�
�C

eq
↵ ,

which neglects a ⇠ do/R correction that would add a higher order term to Eq. (3.19). Equation (3.19)
can be re-arranged to

vn =
dR(t)

dt
=

doD

�CeqR
2(t)

✓
�R(t)

do
� 1

◆
, (3.20)

Equation (3.20) reveals that there is a critical radius

R
⇤ = do/�, (3.21)

Precipitates smaller than R
⇤ lead to a negative growth rate and shrink and dissolve. Precipitates

larger than R
⇤ lead to a positive growth rate and continue to grow and coarsen. The above formalism

is part of Lifshitz-Slyozov theory [19].

It is noted that since � is a function of time, the critical size of a surviving particles, R⇤ is also time
dependent. Thus, unless we also know the time-dependence of the supersaturation �(t), Eq. (3.20)
is formal and cannot be solved. However, this is challenging since �(t) depends on some highly non-
linear way on the distribution of other particles and how they saturate the matrix, i.e. they change
the mean field value of C� . Thus, R⇤ varies in time through its dependence of the driving force �,
which depends on C� , which itself depends on what other particles in the system are doing. For a
detailed treatment of the growth rate of coarsening particles at late stages, the reader is referred to
Refs. [19, 18, 32].

We can still glean interesting results from Eq. (3.20) and Eq. (3.21). At the late stages of particle
coarsening, it can be assumed that the flux of new nuclei is zero and the system comprises a collection
of larger particles of average radius R that are growing under the action of a vanishing supersaturation
�. In this limit, Langer and Schwartz [18] show that an average growing particle size satisfies

R(t)

R⇤(t)
=

R(t)�(t)

do
⇠ constant > 1, (3.22)

where the assumption constant > 1 must be true since at late stages we are only dealing with post-
critical particles that are still growing –albeit very slowly– at a positive velocity vn. Under these
conditions, Eq. (3.20) becomes

vn =
dR(t)

dt
/ doD

�CeqR
2(t)

(3.23)

whose solution yields the famous Lifshitz-Slyozov scaling law,

R(t) ⇠ t
1/3

, (3.24)

Equation (3.24) is the classic growth law governing late stage coarsening in systems of particles con-
strained by a mass conservation, in which nucleation is assumed to be negligible. This process is also is
also referred to as Oswald ripening. As alluded to above, this process sees large particles growing and
consuming the mass of smaller particles until they become sub-critical and dissolve. This behaviour
is prevalent in the late stages of a first order phase transition in the regime of solid fraction Xs ⇡ 1.
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3.2.4 Scaling of particle size distribution in the late time coarsening regime

An important application of the scaling of particles size at late time in the precipitation process is
that makes it possible to work out the scaling law of the corresponding grain (also called particles
here) size distribution in the system. We explore this in this subsection.

We begin by defining by n(R, t) the number of particles between the size R ! R + dR at time t.
We tacitly assume that all particles are spherical. Formally, n(R, t) is given by

n(R, t) =

N(t)X

i=1

�(R�Ri(t)), (3.25)

where the index i = 1, 2, · · ·N(t) runs over the N(t) particles present in the system at time t and Ri(t)
is the radius of the i

th particle at time time t. Note that the units n are [n] = 1/m (i.e., number of
particles per size R). The mean particle size, denoted R̄(t) is given by

R̄(t) =

R
L

0 dRRn(R, t)
R
L

0 n(R, t)dR
=

R
L

0 dRRn(R, t)

N(t)
, (3.26)

where L denotes the size of the system. It turns our that the peak in the observed n(R, t) shifts to
larger R as t increases and its corresponding amplitude decreases. From Eq. (3.26), this lead to R̄

increasing with time, but N(t) becoming smaller as t increases. This can be seen by tracking the solid
fraction,

� =
1

V

NX

i=1

4⇡

3
R

3
i (t), (3.27)

which at late times becomes nearly a constant in coarsening systems. At late times and su�ciently
deep quenches � ⇡ 1, which upon taking the average of Eq. (3.27) and re-arranging, gives 4

N(t) ⇡ V

4⇡
3 R̄3(t)

, (3.28)

which shows that at a fixed time t, the number of particles N(t) must clearly increases proportionately
to volume V since the mean particle size R̄ is independent of V , or at least varies only very slowly
with V at any given time t. It is also clear from the above considerations that the mean particle size
defines a characteristic length for the system, which we define for later use as lc ⇠ R̄(t).

Next, consider a quantity of the system of the form Q(x,R(t), t, Np, V ) where here x is a position
vector, Np is the number of atoms in the system and V the volume. Since t ⇠ R̄(t) in the coarsening
system under consideration, we can replace t by R̄. There may be other length scales in the system
that also change, like in the case of spinodal decomposition, the interface width W�, which grows with
time. In that case, we can write Q as Q(x,R, R̄(t),W�(t), Np, V ). Let us consider the case where Q is
extensive. By definition of extensive quantities, we can write Q ! V q(r,R, R̄,W�, ⇢), where ⇢ is the
system density and q is a density of the original Q. Moreover, let us assume that the density of the
quantity Q we are considering has units [q] = m

p, where p is some exponent. This makes it possible
to scale out the length scale lc from q and write Q(r,R, t) = V R̄

p
f(x/lc, R/lc,W�/lc, · · · ), where f is

4
Since we are predominately interested in performing a dimensional analysis of the particle size distribution, can

assume that R̄3 = barR
3
here.
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a dimensionless scaling function. Now, in first order phase transformations W� is a constant of order
nm and does not change with time, and W�/lc ⌧ 1, so is can be dropped from f , giving

Q(r,R, t) = V R̄
p
f

✓
x

lc
,
R

lc
, · · ·

◆
(3.29)

We next turn to the specific case of the number distribution n(R, t) is a volume V (assumed to
be very large compared to R̄

3(t)). As discussed above, this is an extensive quantity that has units
[n] = m

�1. Thus, using the format of Eq. (3.29) we can write n(R, t) in the form

n(R, t) = V R̄
p
f

✓
R

R̄(t)

◆
(3.30)

It is clear that the exponent p in Eq. (3.30) is p = �4, but let us derive it somewhat di↵erently. To

do so, we substitute Eq. (3.30) into
R
L

0 n(R, t)dR = N , which using Eq. (3.28). yields,

Z
L

0
n(R, t)dR = V R̄

p
f

Z
L

0
f

✓
R

R̄(t)

◆
dR =

V

4⇡
3 R̄3(t)

(3.31)

Making the change of variable ⇠ = R/R̄(t) in Eq. (3.31) yields

R̄
p+1

Z L

R̄

0
f(⇠)d⇠ =

3

4⇡
R̄

�3 (3.32)

Since we are considering late times here and  L/R̄ � 1, it is reasonable to replace the upper limit of
the integral in Eq. (3.32) by  L/R̄!1 without too must loss of accuracy. This gives,

R̄
p+1

Z
1

0
f(⇠)d⇠

| {z }
constant

=
3

4⇡
R̄

�3
, (3.33)

from which we immediately identify p = �4, consistent with our previous assumption. A more
appropriate form for the particles size distribution is one that is intensive and independent of the
system size. Defining by n̄(R, t) as the number of particles per unit volume in the range R! R+ dR

gives the following a universal scaling for n̄,

n̄(R, t) = R̄
�4(t)f

✓
R

R̄(t)

◆
= R̄

�(d+1)(t) f

✓
R

R̄(t)

◆
(3.34)

Precipitates grown in most alloys, such as for example Al-Cu alloys used for aerospace components,
are typically nm in scale. It is common to characterize material microstructure on such scales through
di↵raction experiments, which essentially measure the square of the Fourier transform of density-
density correlation function, which is itself proportional to the particle size distribution function (if
we ignore defects and grain boundaries). The Fourier transform of n̄(R, t) is given by

ˆ̄n(k, t) =

Z
x
�(d+1)

f

⇣
x

R̄

⌘
e
�ikx

dx (3.35)

where k denotes wavevector and d the dimension of space. Once again, making the change of variables
⇠ = x/R̄ yields

ˆ̄n(k, t) = R̄
�d

Z
xi

�(d+1)
f(⇠) e�i(kR̄)xi

d⇠

| {z }
G(kR̄(t))

(3.36)
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which shows that the integral is just some function of the argument kR̄(t). The universal scaling form
for the Fourier transform of n̄ is thus of the form

ˆ̄n(k, t) = R̄
�d

G
�
kR̄(t)

�
(3.37)

Figure (3.5) shows a carton that show the qualitative behaviour of n̄(R, t) and ˆ̄n(k, t) as well as the
scaling functions f(x) and G(k).

Figure 3.5: Left frames illustrate the late-time evolution of n̄(R, t) and ˆ̄n(k, t). The right hand frames
show the universal scaling functions f(x/R̄) and G(kR̄). Reprinted from notes of Professor Martin
Grant, McGill University, Department of Physics [11].
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Chapter 4

Interface Instabilities and the
Emergence of Solidification
Microstructures

Previous chapters considered the kinetics of first order transformation in two broad phases. The first
was the nucleation phase, which is governed by the rate of formation and size distribution of the first
embryonic crystals to emerge in an undercooled liquid. The second described the rate at which post-
critical grains grow and consume the matrix. Both stages tacitly assumed that crystals were spherical
and neither considered that microscopic crystals could evolve dynamic morphologies as they grow. In
fact, what emerges in an experiment are evolving grains that grow into very complex crystal structures,
which include but are certainly not limited to, the well-known snowflake pattern. When individual
crystals coalesce to form a solidified material (i.e., a solid), they leave behind a complex patterning that
is typically referred to as “microstructure” in materials science. A detailed analysis of microstructure
reveals that it contains sub-structures across scales from nm-mm. At the µm � mm scales are the
boundaries between merged crystals, which are referred to generically as grain boundaries. These are
quintessential in defining the real-world mechanical properties of metals and their alloys, such as yield
strength and ductility. In semiconductors, however, grain boundaries are not desirable as they wreak
havoc on the pristine electronic properties of an otherwise perfect crystalline material. The second type
of microstructures occurs in alloys (i.e. mixtures of two or more elemental metal components) involves
the distribution of solutes throughout the bulks of crystalline grains, as well as solute segregation within
the grain boundaries. Solute distribution and segregation is also critical in controlling mechanical and
functional properties of materials. The third and fourth types of microstructure emerge on the scale
of angstroms-nanometers and involves the formation of vacancies and dislocations. Vacancies (i.e.,
vacant lattice sites in the crystal lattice) are thermodynamically stable in solids at all temperatures.
However, rapid rates of solidification can lead to large (i.e., non-equilibrium) vacancy densities, which
change the e↵ective properties of the solid phase. Dislocations emerge when a crystal is subjected
to mechanical deformation, which leads to misfits between neighbouring atomic planes. This occurs
by design when post-processing most metals and their alloys. However, dislocations can also emerge
spontaneously during rapid solidification in technologies such as metal 3D printing, laser welding,
splat cooling. Under extensive mechanical loading 3D dislocations can actually extend over many
µm and become entangled; such tangles are perhaps the most important mechanism for dramatically
mechanical strength of a metal alloy.

It is fair to say that microstructure determines by the nearly all the real-world properties of most
materials. For a detailed and thorough review of the entire topic of solidification microstructures, from
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the physics of how they emerge to their applications in engineering materials, the reader is referred to J.
Dantzig and M. Rappaz book solidification [6]. In this section, we will examine the origins of complex
microstructure by examining interface instabilities tat occur in most 1st phase transformations. As a
concrete backdrop, we will examine this topic in the context of solidification, starting first by deriving
the kinetic laws governing crystallization, and following this with an investigation of how a solidifying
front becomes unstable, the quintessential precursor to grain boundary formation and other complex
shapes in materials.

4.1 Sharp-Interface Model of Solidification of a Pure Substance

Section 3.2.1 summarized the conditions that prevail along a a moving interface separating two phases
in a binary alloy. These comprise what is known as a sharp-interface model (or SIM for short) of a
phase transformation. In this sub-section we consider the solidification of a pure substance and derive
a SIM to describe this process. We derive the SIM here in more detail than we did for allows since the
thermal physics governing a pure material are simple to visualize and intuit. The steps shown here
are straightforwardly adapted to the alloy case in Section 3.2.1, and are left to the reader, or can be
found in the literature (e.g., Ref ([26])).

Consider a 1D front of a solid growing into a metastable liquid that is undercooled, as depicted in
the cartoon in Fig. (4.1). As the interface advances, latent heat is released, which in turn di↵uses into

Figure 4.1: Cartoon of a 1D interface advancing toward the right into an undercooled liquid, depicting
the directions of heat flow as new solid of thickness �x is created during the advance of the solidification
front. The interface position at time t is located at xi. A cross section of area A = Ly⇥Lz is considered.

the bulks (solid and liquid). With reference to geometry and symbols in Fig. (4.1), the latent heat
released when a slab of new solid of thickness �x is formed over a time �t is equal to ⇢Lf�xLyLz

where ⇢ is the density of the material (assumed for simplicity to be equal in both phases), Lf is the
latent heat or enthalpy of fusion (per mass) for converting a volume of liquid to solid, A = Ly ⇥ Lz

is the cross sectional area of the advancing front. We can relate the heat released to the advance
speed of the front and the local temperature field as follows. The flux of heat across the liquid-facing
end of the increment of the solid slab is given by Fick’s law as Jxi+�x = �k @T/@x|

xi+�x
, where T

is the temperature field and kL the thermal conductivity of the liquid. The flux of heat across the
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solid-facing end of the solid slab is given by Jxi
= �ks @T/@x|xi

, where ks is the thermal conductivity
of the solid. Assuming 1D heat flow, conservation of energy requires that the di↵erence in the heat
fluxes across the two surfaces enclosing the small slab must equal the heat created, i.e.,

⇢Lf�xLyLz = (Jxi+�x � Jxi
)LyLz�t (4.1)

Simplifying Eq. (4.1), rearranging terms and taking the limit �t! 0 and �x! 0 gives

⇢Lfvn = ks
@T

@x

����
x
+
i

� kL
@T

@x

����
x
�
i

(4.2)

where vn = lim�t!0 (�x/�t) and x
±

i
represents the liquid(+)/solid(-) sides of the mathematically

sharp (in the limit) solid-liquid interface. Similar arguments adapted to a small cross section of a
complex solid-liquid interface advancing in 3D generalize Eq. (4.2) to its 3D form as

⇢Lfvn = ks rT · n̂|
s
� kL rT · n̂|

L
(4.3)

where n̂ denotes the unit normal to the interface, which by convention points into the liquid, and
where vn represents the interface velocity along the normal direction. The subscripts s and L denotes
the solid/liquid sides of the interface. Equation (4.3) serves as Neumann type of boundary condition
that relates derivatives in T (x, y, z, t) to the local interface speed.

The temperature field T (x, y, z, t) must also satisfy a Dirichlet type of boundary condition at the
solid-liquid interface, which is called the Gibb-Thomson condition, given by

Tint = Tm � 2�� vn

µ
(4.4)

where Tint is the interface temperature, Tm is the melting temperature, � is the so-called Gibbs-
Thomson coe�cient,  is the local mean curvature of the interface 1 and µ is the atomic mobility
in the liquid. The Gibbs-Thomson coe�cient � is related to the more familiar solid-liquid interface
energy �sl by

� =
�slTm

⇢Lf

(4.5)

The atomic mobility µ can be in theory determined (sometimes!) from molecular dynamics simulations.
It is instructive to analyze the physical meaning of Eq. (4.4). When  = 0 (as in Fig. (4.1)) and
vn = 0, it reduces to the well-known condition that states that a stationary solid-liquid interface is
at the melting temperature (i.e. the only temperature that can simultaneously support both phases).
When  6= 0 and vn = 0, Eq. (4.4) states that the equilibrium temperature is depressed by the local
curvature of the interface. The last term in Eq. (4.4) depresses the equilibrium temperature due to
non-equilibrium attachment kinetics at the interface. To see this, invert the equation for the speed of
the interface in 1D, which gives vn = µ (Tint � Tm), which tells us that the speed of the interface is
directly proportional to the degree of undercooling at the solid-liquid interface, which makes perfect
sense! It is noteworthy, however, that for very slow rates of solidification (0 < vn < mm/s), the kinetic
undercooling term is typically ignored in solidification modelling. This is justified for metals and their
alloys because µ is quite large compared to most soft-matter systems. For higher rates of solidification,

1
The mean curvature in 3D is  = (1/R1 + 1/R2)/2 where R1 and R2 are the local radii of curvature in the x and

y directions. In 2D the mean curvature reduces to 1/2R (see Ref. [6] page 52) and so the factor of 2 disappears in the

statement of the Gibbs-Thomson condition.
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the kinetic term in the Gibbs-Thomson condition must be includes and, indeed, produces quite exotic
non-equilibrium e↵ects on the morphology and composition (in alloys) of phases produced.

Away from the solid-liquid interface, the extended temperature field T (x, y, z, t) must evolve in
time according to the energy conservation equation, i.e.,

⇢cp
@T

@t
= �r · Jq

= r (krT ) , (4.6)

where cp is the specific heat at constant pressure and Jq = �krT is Fick’s Law, a constitutive relation
between heat flux and temperature, and where k is the thermal conductivity. Eq. (4.6) becomes

@T

@t
= r (↵rT ) , (4.7)

where ↵ = k/(⇢cp) is the thermal di↵usivity. 2.
Equation (4.7) and the boundary conditions defined by Eq. (4.3) and Eq. (4.4) define a complete

sharp interface model for the evolution of a solidification front, as well as the accompanying temperature
field T (x, y, z, t). These equations will examined in the following pages to elucidate the physical
mechanism behind the emergence of complex dendritic morphologies.

4.2 Solidification of an Undercooled Spherical Liquid Drop

This section solves the SIM model of section (4.1) in spherical geometry, a solution that will then be
used in the next section to examine how linear instabilities emerge in a solidifying front. The original
work on this topic was done by Mullins and Sekerka in their seminal work in Ref. [24]. For detailed
solutions to numerous other solidification problems in various geometries, as well as for a comprehensive
review of alloy thermodynamics, the reader is referred to the comprehensive and excellently-written
work on solidification written by two pioneers in the field of solidification, Jon Dantzig and Michelle
Rappaz [6].

Consider the growth of a 3D spherically symmetric crystal sphere of size R(t) growing into an
undercooled liquid, as depicted in the cartoon of Fig. (4.2). The sharp interface equations describing
the solidification of the crystal in this geometry are described Equation (4.7), Eq. (4.3) and Eq. (4.4),
which in spherical co-ordinates (r, ✓,�) become

@T

@t
=
↵s

r2

@

@r

✓
r
2@T

@r

◆
, 0 < r < R(t)

@T

@t
=
↵L

r2

@

@r

✓
r
2@T

@r

◆
, R(t) < r <1 (4.8)

Tint = Tm � 2� = Tm �
2�

R(t)
, r = R(t))

⇢LLf

dR

dt
= ks

@T

@r

����
r=R�

� kL
@T

@r

����
r=R+

T (r !1) = T1

2
It is a reasonable to approximate thermal conductivity k as constant in most phase transformations in metals. It is

stressed, however, that for mass di↵usion in alloys, the ratio of solute di↵usivities in solid/liquid ⇠ 10
�3

� 10
�4

, and so

the solute di↵usion cannot be modelled as a constant as it leads to di↵erent physics from the constant-di↵usion case.

51



Figure 4.2: 3D crystal sphere solidifying into an undercooled liquid. At time t the interface is located
at R(t) and its speed is vn = dR/dt. The interface temperature deviates from the equilibrium melting
temperature Tm due to the curvature, where � is the Gibbs-Thomson coe�cient. Also shown is the
general shape of the temperature field away from the sphere, where T1 is the far-field temperature.

where ↵L/↵s are the thermal di↵usivities of the liquid/solid and T1 is the far-field temperature. Here,
R

± refer to the liquid/solid sides of the interface at r = R(t). It is also assumed that there is some
initial temperature field T (r, t = 0) to be determined below.

It is instructive to rescale the Equation (4.8) to make them dimensionless. We begin by making
space and time dimensionless according to r̄ = r/Ri and t̄ = t/tc, where Ri is the initial crystal radius
and tc = R

2
i
/(↵L�) is a characteristic time, with � = cp�T/Lf and �T = Tm�T1. The temperature

is also rescaled to ⇥ = (T � Tm)/�T . In scaled units, the radius of the crystal becomes R̄(t) and its
curvature ̄ = 1/R̄(t). We further define the ratios kr = ks/kL and ↵r = ↵s/↵L (which satisfy kr = ↵r

if we assume the same density in both phases). We also define the dimensionless critical nucleus 3 size
by R̄

⇤ = R
⇤
/Ri. These scalings and definitions are compactly summarized as follows:

r̄ = r/Ri, t̄ =
�
↵L�/R

2
i

�
t, ⇥ = (T � Tm)/�T, R̄(t) = R(t)/Ri,

� = cp�T/Lf , �T = Tm � T1, kr = ks/kL, ↵r = ↵L/↵s, R̄
⇤ = R

⇤
/Ri (4.9)

Note that in scaled units, the initial conditions are R̄ = 1, since Ri is initial crystal size. Also for
future reference, � is referred to as the Stefan number.

Applying the re-scalings in Eq. (4.9) converts Eq. (4.8) to the more compact form

�
@⇥

@ t̄
=
↵r

r̄2

@

@r̄

✓
r̄
2@⇥

@r̄

◆
, 0 < r̄ < R̄(t)

�
@⇥

@ t̄
=

1

r̄2

@

@r̄

✓
r̄
2@⇥

@r̄

◆
, R̄(t) < r̄ <1 (4.10)

⇥int = �(R̄⇤) ̄ = � R̄
⇤

R̄(t̄)
, r̄ = R̄(t))

dR̄

dt̄
= kr

@⇥

@r̄

����
r̄=R̄�

� @⇥

@r̄

����
r̄=R̄+

⇥(r̄ !1) = �1

3
The critical nucleus size is R

⇤
= 2�sl/�G. Using Eq. (4.5) and �G = (⇢Lf/Tm)�T for a pure substance [6] gives

R
⇤
= 2�/�T .
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It is instructive to compute the typical magnitude � for Aluminum, a common metal of practical
interest. For Al, cp = 1.19 ⇥ 103 J/kg-K and Lf = 3.98 ⇥ 105 J/kg, and typical undercooling values
during solidification are of the order �T ⇠ 1 K. This gives � ⇡ 0.003 ⌧ 1. In this limit, it is
convenient to neglect the time derivatives in Eq. (4.10) in what follows.

The solution of the di↵usion equations in Eq. (4.10) is of the form ⇥(r̄, t̄) = a(t̄)+ b(t̄)/r̄ (with the
time derivatives in Eq. (4.10) neglected). The constants a and b are found by substituting r̄ = R̄(t̄)
into ⇥(r̄, t̄) and matching the result to the right hand side of the third line in Eq. (4.10) (the Gibbs-
Thomson condition). This together with the far-field condition in Eq. (4.10) gives a(t̄) = �1 and
b(t̄) =

�
1� R̄

⇤
/R̄(t̄)

�
R̄(t̄). The compete solution of ⇥ in the liquid is thus

⇥(r̄, t̄) ⌘ ⇥L

o (r̄, t̄) =

⇢
1� R̄

⇤

R̄(t̄)

�
R̄(t̄)

r̄
� 1, R̄(t̄) < r̄ <1 (4.11)

Applying the same solution form to the solid and considering that the solution must be bounded
requires that b = 0, while the Gibbs-Thomson condition in Eq. (4.10) now gives a = �R̄⇤

/R̄(t̄). This
gives the complete solution of ⇥ in the solid as

⇥(r̄, t̄) ⌘ ⇥s

o(r̄, t̄) = �
R̄

⇤

R̄(t̄)
, 0 < r̄ < R̄(t̄) (4.12)

Notice that ⇥ is continuous at the interface as it must from our intuition that temperature must be
continuous at the interface. The notations ⇥s,L

o have been made for later use.
The flux conservation equation in Eq. (4.10) is next used to find an equation for R̄(t̄). The

derivative of the temperature at the solid side of the interface is @⇥s
/@r̄|

r̄=R̄� = 0, while the derivative
on the liquid side of the interface is @⇥L

/@r̄
��
r̄=R̄+ = �

�
1� R̄

⇤
/R̄(t̄)

�
/R̄(t̄). Substituting these

expressions into the flux conservation equation gives

dR̄(t̄)

dt̄
=

✓
1� R̄

⇤

R̄(t̄)

◆
1

R̄(t̄)
(4.13)

This equation, solved subject to the initial condition that R̄(t̄ = 0) = 1, gives the dimensionless size
of the crystal as a function of time.

It is noteworthy that there is only one initial condition that can be satisfied by ⇥(r̄, t̄) since we
neglected the time derivatives in Equation (4.10). This given by taking the limit R̄(t̄ = 0) = 1 in
Eq. (4.11) and Eq. (4.12), which gives,

⇥(r̄, t̄ = 0) =

8
<

:

⇥s
o(r̄, t̄ = 0) = �R̄⇤

, 0 < r̄ < 1

⇥s
o(r̄, t̄ = 0) =

�
1� R̄

⇤
 
/r̄ � 1, 1 < r̄ <1

Moreover, when t̄ = 0, Eq. (4.13) gives

dR̄(t̄)

dt̄

����
t̄=0

= 1� R
⇤

Ri

, (4.14)

where we have reverted to dimensional units on the right hand side of Eq. (4.14) for clarity. Equa-
tion (4.14) implies that only crystals whose initial size is greater than the critical nucleus size, i.e.
Ri > R

⇤, can grow, which of corse makes perfect sense. For the case of precisely Ri = R
⇤, the initial

temperature field ⇥(r̄, t̄ = 0) = �1 everywhere, which corresponds to T (r, t = 0) = T1, and the
crystal size neither grows or shrinks.
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Figure 4.3: The solution of Eq. (4.13) for a crystal seed with initial radius Ri = 1.01R⇤, i.e. just
slightly greater than the critical nucleus size. The early time growth is slow and then grows rapidly
at intermediate times. At late times, the growth settles onto the usual R̄(t̄) ⇠ t̄

1/2 growth law for
planar, or near-planar interfaces growing into an undercooled melt.

4.3 Stability of an Undercooled Spherical Liquid Drop

In this section we examine the stability of a solidifying spherical liquid drop whose spatiotemporal
evolution is described by Eqs. (4.11)-(4.13). We will show how it is impossible for a spherical crystal to
remain spherical beyond some sizeR(t), and after while its interface becomes unstable to perturbations,
giving rise to wave-like undulations that are the precursors to the complex morphologies that arise
in crystal microstructures, such as the tree-like patterns called dendrites, which give snowflakes in ice
their shape, and also appear in solidified metals and their alloys.

In what follows, we assume that the base spherical crystal interface shape R̄o(t̄) studied in
Section (4.2) will become unstable as it starts to evolve very small random undulations. The ra-
dius of the crystal, from the centre to a point on the solid-liquid interface, is now represented as
R̄(✓,�, t̄) = R̄o(t̄) + R̄1(✓,�, t̄), where R̄1 is a small perturbation away from the base solution. Here,
✓ and � are the polar angles of the (r, ✓,�) co-ordinate system. It is also noted that we will continue
to work in the dimensionless units described in Eq. (4.9). The undulations encoded in R̄1 can be
expanded is a series of spherical harmonics Y

m

l
(✓,�), where l and m are the integer indices of the

harmonic that satisfy l = 0, 1, 2, · and �m < l < m. As is typically done in perturbation analysis, we
will study the growth rate of any given harmonic as it grows at early time, when its amplitude is very
small. To do so, we expand the shape of the crystal as

R̄(✓,�, t̄) = R̄o(t̄) + �(t̄)Y m

l
(✓,�) (4.15)

where the small amplitude of the harmonic undulation is captured by the dimensionless quantity
�(t̄) ⌧ 1. As the crystal becomes unstable, naturally so will the thermal field that companies its
growth. We thus expect that the complete solution of the thermal field within the growing solid and
outside in the liquid is given by the expansion

⇥s(r̄, ✓,�, t̄) = ⇥s

o(r̄, t̄) + �(t̄)⇥s

1(r̄, ✓,�, t̄), 0 < r̄ < R̄(✓,�, t̄)

⇥L(r̄, ✓,�, t̄) = ⇥L

o (r̄, t̄) + �(t̄)⇥L

1 (r̄, ✓,�, t̄), R̄(✓,�, t̄) < r̄ <1, (4.16)
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where here, ⇥s,L
o are the base solutions of the perfectly spherical crystal given by Eq. (4.11) and

Eq. (4.12), and ⇥s,L

1 are perturbations of the dimensionless temperature away from the base solution.
These are considered of order unity and the amplitude of the temperature perturbation is carried
by �. The goal of the remainder of this section is to determine an equation satisfied by �(t̄) and
the associated thermal perturbation fields ⇥s,L

o . Once that is done, we can assess what harmonic
morphologies (i.e. value of l and their subharmonics in m) can become unstable and grow during
solidification and which ones remain stable and do not manifest themselves in the early-time crystal
morphology.

To proceed, we substitute the expansion of the thermal fields in Eq. (4.16) into the di↵usion
equations r2

(✓,�)⇥L(r̄, ✓,�, t̄) = 0 and r2
(✓,�)⇥s(r̄, ✓,�, t̄) = 0, which are just the first two lines of

Eq. (4.10) with (i) the time derivatives neglected and (ii) with the laplacian written in full (r̄, ✓,�)
co-ordinates. Doing so gives leads to the following equation to be satisfied by both ⇥s

1 and ⇥L

1 ,

1

r̄2

@

@r̄

 
r̄
�2@⇥s,L

1

dr̄

!
+

1

r̄2 sin ✓

@

@⇥s,L

1

 
sin ✓

@⇥s,L

1

@✓

!
+

1

r̄2 sin2 ✓

@
2⇥s,L

1

@�2
= 0 (4.17)

it is noted that the base solutions disappear when the forms in Eq. (4.16) are substituted into the
laplacian since, by construction, they automatically satisfy the radial-only part of the laplacian (i.e.

@r̄

⇣
r̄
2
@⇥s,L

o /@r̄

⌘
= 0), leaving only Eq. (4.17) to be satisfied by the perturbation functions in each

region. Substituting a solution for ⇥s,L

1 = f(r̄)Y (✓,�) into Eq. (4.17), and using separation of variables
(or just look up in some mathematical physics text), it is straightforward to show that the general
solution of Eq. (4.17) is given by

⇥s,L

1 (r̄, ✓,�) =
n
A(t̄) r̄l +B(t̄) r̄�l

o
Y

m

l
(✓,�) (4.18)

The requirements of bounded solutions requires that A = 0 in the general solution in the liquid region,
and B = 0 in the general solution in the solid region. The completed solution of the dimensionless
temperature field is thus given by

⇥s(r̄, ✓,�, t̄) = ✓
s

o(r̄, t̄) + �(t̄)As(t̄) r̄
l
Y

m

l
(✓,�), 0 < r̄ < R̄(✓,�, t̄)

⇥L(r̄, ✓,�, t̄) = ✓
L

o (r̄, t̄) + �(t̄)
AL(t̄)

r̄l+1
Y

m

l
(✓,�), R̄(✓,�, t̄) < r̄ <1 (4.19)

The coe�cients As, AL and � will be determined from the boundary conditions in Eq. (4.10) (i.e.,
the last three lines), each of which will be adapted to polar co-ordinates and evaluated on the surface
R̄(✓,�, t̄) in Eq. (4.15).

To apply the Gibbs-Thomson boundary condition in Eq. (4.10) to the perturbed temperature
solutions, it must first be upgraded from its spherically symmetric form to one suitable for an arbitrary
3D surface, i.e.

⇥int(✓,�) = �
2�

�T
̄(✓,�) = �R

⇤

Ri

̄(✓,�) = �R̄⇤
̄(✓,�), (4.20)

where the dimensionless curvature ̄(✓,�) applies to a general 3D surface 4, such as that given by
Eq. (4.15). Applying the definition of curvature for a 3D surface in polar co-ordinates to R̄(✓,�, t̄)

4
Curvature is defined by ̄ =

�
1/R̄1 + 1R̄2

�
/2, where R̄1 and R̄2 are the principal radius of curvature. Readers

following Ref. [24] should note that they don’t have the factor of 1/2 in the definition of curvature, and so their

expression for curvature must be divided by 1/2.
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and expanding the answer to linear order in � yields

̄(✓,�) =
1

R̄o(t̄)

⇢
1�

�(t̄)Y m

l
(✓,�)

R̄o(t̄)

�
� �(t̄)

2R̄2
o(t̄)

L{@✓, @�}Y m

l
(✓,�), (4.21)

where L{@✓, @�} is compact notation for the operator

L(@✓, @�) ⌘
1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

sin2 ✓

@
2

@�2
(4.22)

Applying the spherical harmonic identify L{@✓, @�}Y m

l
(✓,�) = �l (l + 1)Y m

l
(✓,�) simplifies Eq. (4.21)

to the more compact form

̄(✓,�) =
1

R̄o(t̄)

⇢
1�

�(t̄)Y m

l
(✓,�)

R̄o(t̄)

�
+

�(t̄)

2R̄2
o(t̄)

l (l + 1)Y m

l
(✓,�) (4.23)

Finally, substituting Eq. (4.23) into Eq. (4.20) and factoring like terms yields the order-� Gibbs-
Thomson condition,

⇥int(✓,�) = �
R̄

⇤

R̄o(t̄)
� �(t̄) R̄

⇤

2R̄2
o(t̄)

[ (l + 2)(l � 1) ]Y m

l
(✓,�), (4.24)

which is next to evaluate the complete form of the perturbed thermal solutions.
The strategy next is as follows: (1) evaluate each of the thermal solutions in Eq. (4.19) at r̄ =

R̄o(t̄) + �(t̄)Y m

l
(✓,�); (2) expand the result to order �; (3) compare the expanded result (separately

for the liquid and the solid) to Eq. (4.24) and extract the coe�cients As and AL. Proceeding as per
the above three steps yields the following expansion for the thermal field of the liquid evaluated at
r̄ = R̄,

⇥L

int '
✓
�1 + CL

R̄o(t̄)

◆
+ �(t̄)

✓
AL

R̄
l+1
o (t̄)

� CL

R̄2
o(t̄)

◆
Y

m

l
(✓1) , (4.25)

where CL =
�
R̄o(t̄)� R̄

⇤
�
. Equating Eq. (4.25) to Eq. (4.24) and matching terms of order O(1) shows

that this term is just the base solution in Eq. (4.11), evaluated at R̄o(t̄). Matching of the O(�) terms
yields

AL(t̄) =

⇢
1� R̄

⇤

R̄o(t̄)

�
R̄

l

o(t̄)�
R̄

⇤

2
R̄

l�1
o (t̄) [(l + 2)(l � 1)]

= R̄
l

o(t̄)�
R̄

⇤

2
R̄

l�1
o (t̄) l(l + 1) (4.26)

Substituting this expression for AL into the second line of Eq. (4.19) yields the complete liquid phase
solution to order �,

⇥L(r̄, ✓,�, t̄) =

�
R̄o(t̄)� R̄

⇤
 

r̄
+ �(t̄)

�
R̄

l
o(t̄)� 1

2R̄
⇤
l (l + 1) R̄l�1

o (t̄)
 

r̄l+1
Y

m

l
(✓,�) � 1, R̄(✓,�, t̄) < r̄ <1

(4.27)

Proceeding in exactly the same way with the solid phase solution in Eq. (4.19) and matching it to
Eq. (4.24) yields the complete solid phase solution to order �

⇥s(r̄, ✓,�, t̄) = � R̄
⇤

R̄o(t̄)
� �(t̄)

⇢
R̄

⇤ [(l + 2)(l � 1)]

2R̄l+2
o (t̄)

�
r̄
l
Y

m

l
(✓,�), 0 < r̄ < R̄(✓,�, t̄) (4.28)
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The final phase of the stability analysis of the base crystal solution R̄(t̄) is to find an equation
for the amplification factor, or growth rate, coe�cient �(t̄). This is done via the flux conservation
equation, which becomes

vn = kr r⇥s(r̄, ✓,�) · n̂|
R̄� � r⇥L(r̄, ✓,�) · n̂

��
R̄+ (4.29)

The procedure is as follows: (1) use the perturbed thermal solutions in Eq. (4.19) to evaluate the
right hand side terms of Eq. (4.29) , while the surface r̄ = R̄o(t̄) + �(t̄)Y m

l
(✓,�) is used to evaluate

the normal velocity. It is recalled that only terms to order �(t̄) are retained in these evaluations; (2)
compare terms of the same order in � to yield di↵erential equation satisfied by �(t̄). Since �(t̄)⌧ 1 the
normal velocity vn = v · n̂ can be approximated by the time derivative of R̄(✓,�, t̄) and the gradients
on the surface of R̄(✓,�, t̄) can be approximated by radial derivatives. This simplifies Eq. (4.29) to

dR̄o(t̄)

dt̄
+ Y

m

l
(✓,�)

d�(t̄)

dt̄
' kr

@⇥s

@r̄

����
R̄(r̄,✓,�)

� @⇥L

@r̄

����
R̄(r̄,✓,�)

(4.30)

Proceeding with the evaluation and simplification of the first derivative term on the RHS of Eq. (4.30)
gives

kr
@⇥s

@r̄

����
r̄=R̄(r̄,✓,�)

= ��(t̄) krR̄
⇤[(`+ 2)(`� 1)`]

2R̄3
o(t̄)

Y
m

l
(✓,�) (4.31)

Similarly, the second term on the RHS of Eq. (4.30) can be approximated by

@⇥L

@r̄

����
r̄=R̄(r̄,✓,�)

= �C + �(t̄)

(
2C

R̄o(t̄)
�
(

1

R̄2
o(t̄)
� R̄

⇤

2R
3
o(t̄)

`(`+ 1)

)
(`+ 1)

)
Y

m

l
(✓,�), (4.32)

where

C ⌘
⇢
1� R̄

⇤

R̄o(t̄)

�
1

R̄o(t̄ )
(4.33)

We next substitute Eq. (4.31) and Eq. (4.32) into Eq. (4.30) and comparing orders of �(t̄). To order
O(1), we recover Eq. (4.13) as we must since this is a perturbation theory. Comparing terms of order
O(�) yields, after some algebra and simplifications,

d�(t̄)

dt̄
=

⇢
1� R̄

⇤

2R̄o(t̄)
[(`+ 1)(`+ 2) + 2 + kr `(`+ 2)]

�
(`� 1)

R̄2
o(t̄)

�(t̄) (4.34)

where we used the identity ` (`+ 1) � 4 = (`� 1) [ (`+ 1) (`+ 2) + 2 ] to arrive at Eq. (4.34). It is
noted that the solution of Eq. (4.34) requires the solution of Eq. (4.13) to be input on the RHS, which
is also a standard outcome of most perturbation theories; higher-order perturbations to a desired
solution require input from the lower order perturbation.

Analysis of Eq. (4.34) shows that an l = 0 mode of a perturbation around the base circular seed
decays in amplitude at t̄!1 regardless of the size of the Ro(t̄). A perturbation with mode l = 1 also
never becomes unstable since �(t̄) = 0 for all t̄; this is referred to as neutral stability). The first surface
instability around Ro(t̄) that can grow corresponds to any mode of l = 2. Examining the expression in
the curly parentheses in Eq. (4.34) reveals that the growth rate of any l = 2 mode grows in amplitude
when the base circular seed satisfies

R̄o(t̄) > (7 + 4kr) R̄
⇤ (4.35)
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Figure 4.4: Amplification growth rate governed by Eq. (4.34) for an l = 2 mode around an undercooled
crystal seed. This plot depicts the case of R̄⇤ = 0.5 (i.e. initial seed size Ri = 2R⇤) and kr = 1. The
early time growth decays because the right hand side of Eq. (4.34) is negative when R̄(t̄) ⇠ 1. A
changeover from decay to growth of the amplification factor occurs at about t̄ ⇠ 25, whereupon
R̄o(t̄) > (7 + 4kr)R̄⇤ = 11R̄⇤.

In other words when the base (i.e. first order) crystal solution becomes larger than the critical nucleus
size by a factor of (7 + 4kr), the surface of an circular, undercooled, crystal seed will exhibit surface
undulation that are some linear combination of the l = 2 family of spherical harmonics. Figure (4.4)
shows this e↵ect for the growth rate of the amplification factor �(t̄) for an l = 2 mode. Figure (4.5)
depicts the three possible modes of deformation of the surface of the base spherical crystal seeds.
Specifically, the figures depicts R̄(t̄) in Eq. (4.15) with deformation modes Y m

2 , for m = �1, 0, 1.

Figure 4.5: Three modes of deformation of a base circular crystal R̄o(t̄) caused by a perturbation of
its surface by the spherical harmonics Y m

2 (✓,�), m = �1, 0, 1. The amplification rate � in Eq. (4.15)
has been exaggerated in the figure to illustrate the form of the surface undulations.

The above linear stability analysis is often referred to as the Mullins and Sekerka stability analysis,
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after the authors that first developed it in Ref. [24]. It is straightforward to extend this analysis to
planar front in 2D and 3D by adapting the approach outlines in this sub-section. This is left as
an exercise for the reader (the reader is referred to Ref. [6] for some of the details of these other
calculations.)

4.4 Beyond Linear Stability: Dendritic Growth Forms

The Mullins and Sekerka (MS) instability outlined in the previous section is a generic instability that
occurs in any 1st order phase transition involving the motion of a two-phase boundary driven by a
thermodynamic excess energy that drives a system towards equilibrium (e.g. solid grains grow in a
metastable liquid such as to transform the liquid into a solid. The pattern of the first instability to
form on the interface is a competition between two factors: (1) di↵usion of latent heat (or segregation
of solute in the case of alloys) away from the interface and (2) interface energy. The first controls the
accumulation of heat in front of the interface, which a↵ects the local e↵ective undercooling ahead of an
advancing front. On the other hand, surface energy resists any increase of surface area, which always
increases the excess free energy of a system. The di↵usional element of the MS instability is depicted
in Fig (4.6) for the case of a 2D soli-liquid interface. As latent heat released away from a planar
interface reduces the undercooling uniformly ahead of the planar front, causing the entire interface
to slow down. It turns out that the speed of an undercooled planar interface will asymptotically
approach zero as hvi ⇠ t

�1/2. Conversely, an interface that develops a sinusoidal perturbation exhibit

Figure 4.6: Illustration of the temperature gradients at some locations ahead of an advancing front at
two times. (left) at early times, the front is planar (time=t1), while at some later time (t2) the interface
amplifies a sinusoidal instability as it advances. The latent heat released in the planar interface reduces
the undercooling uniformly ahead of the planar front, causing the entire interface to slow down. A
fortuitous instability that is sinusoidal, however, can preferentially di↵use heat into the troughs of the
front, allowing the regions around the peaks to maintain a larger undercooling T < Tm. These peaks
start to grow faster than the troughs.

faster growth rates at the peaks of the front compared to the troughs These modes grow by allowing
the regions around the peaks to maintain a larger undercooling T < Tm. Based on Fig (4.6) alone,
one might imagine that the wave modes with the highest frequency will lead to the largest growth
patterns selected. However, this is not the case as larger frequency modes also lead to larger solid-liquid
interface energy, which is unfavourable. Thus, there is in fact a balancing act between di↵usion at the
front and interface energy, which ultimately selects a characteristic length scale governing the initial
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interface instability of the interface. 5. Further pedagogical details of how to extract this characteristic
length scale of unstable solid-liquid interface, in 2D and 3D, are shown round in Refs [6, 17].

The MS interface instability analysis is only accurate at very early times, specifically for t ⌧
tc = Ri/(↵L�). At times much larger than Tc, the interface evolution is governed by the highly
non-linear dynamics of the sharp interface model. This requires fairly sophisticated computational
techniques to solve in order to track the complex interface patterns that emerge. Figure (4.7) shows
the time evolution of a solid liquid interface obtained from an experiment in which a transparent
organic material is solidified. The images are in a coordinate frame that is moving with the interface,
which evolves in time from right to left. The first three images show how a planar front becomes
unstable and amplifies some characteristic mode, which sets a characteristic length scale. At later
times, non-linear amplifications of this and other modes gives way to a more complex cellular patters,
at first, followed later by thicker cellular patterns that have themselves also become unstable and given
rise to transverse growth modes along their length; these are called side branches. This behaviour is

Figure 4.7: Experimental image sequence of a solid-liquid interface evolving from right to left. The
sample is an organic thin-film deposited as a liquid on a microscope slide sitting on a movable stage
that is slowly pulled to the right, across a thermal gradient that maintains a temperature T < Tm the
left side of the stage and T > Tm on the right side.

typical of all solidification experiments in most materials. It is also manifested in solid state particle
growth and pretty much any 1st order phase transformation.

4.5 Limitations of Sharp Interface Models

By this point, we have said pretty much as much as we can about pattern formation in 1st order
phase transitions. As with the phase separation in 2nd order phase transitions, there is not much we
can say analytically beyond what is revealed by linear analysis of the early stages of growth, which
set the characteristic length and time scales. To study microscopic patterns in non-equilibrium phase
transformations at late times, it appears must lower our pencil and head to the computers, armed with
the full set of equations of the sharp interface model (SIM) described above. To some extent that is
true, but it is noted that the simple sharp interface model itself is a simplification. It does not contain

5
A clarification is in order here. As shown in the previous section, the harmonics comprising a noisy 3D crystal front

will be amplified at di↵erent times in the growth of a spherical seed, but they will all be in multiples of the wavelength

set by the l = 2 harmonic. The adaptation of the MS analysis to a 2D planar front shows that all modes can be amplified

at the same time, but with di↵erent rates, leading again to one characteristic wavelength being selected by the system.
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any information about the characteristic processes taking place within the nm scale of the interface
itself. Moreover, while the SIM can describe a single topologically connected grain, it is notoriously
di�cult and computationally intensive to track multiple grains and nearly intractable to describe their
proper coalescence. A more complete picture of the physics of solidification and other 1st order phase
transformations requires that we abandon the SIM and turn to Ginzburg-Landau type theories, from
which are derived another class of models known as phase field models (PFM). These are field-theoretic
models that describe a system from a set of continuous fields, most important among which is the
order parameter of phase field. This field is continuous is space and time and keeps attains positive
values in solids or other ordered phases and zero in liquid or disordered phases, while interpolating
between these extremes within a nm region that defines an interface, which comes naturally with the
introduction of the order parameter in a system’s thermodynamics and kinetics. The order parameter
also couples to other fields such as temperature and solute distribution. Their coupled motion this
gives a continuous description of a system, mapping out the properties the bulk phase and interfacial
regions.

Ginzburg-Landau theories themselves arise from standard mean field theories of phase transition,
in which the order parameter is assumed to be a standard thermodynamic variable that attains some
values within the bulk of a phase. Example of mean field theories that the reader may already
be familiar with from undergraduate physics courses include magnetization (Ising Model), density
di↵erence between two fluids (phase separation in liquids), crystalline orientation (mean field theory
of solidification), and others. For a detailed study of mean field theories, Ginzburg-Landau models
and phase field modelling, the reader is referred to Ref. [27]. Some further mean field theories and
phase field type models are also also examined in later sections of these notes.
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Chapter 5

Topics in Mean Field Theory

Mean field theory as a formalism by which to introduce an order parameter into the thermodynamic
description of a system alongside the traditional thermodynamic variables like temperature, volume,
particle number, pressure, chemical potential, etc. [27]. The order parameter can naturally emerge
from the microscopic scale as a coarse grained descriptor of broken symmetry phases in ferromagnetism,
phase separation in binary mixtures, as well as in solidifying liquids, precipitating solids, etc. The free
energy describing the thermodynamics of these (and other) systems is expanded near some reference
state in terms of the order parameter in such as way as to reflect the symmetries of the system as
well as the type of phase transformation. If materials interfaces are to included, the order parameter
becomes a spatially extended field, and powers of its gradient must also be incorporated into the
expansion of the free energy, thus leading to a Ginzburg-Landau functional.

The order fields can also be coupled to other fields that model long-wavelength phenomena ac-
companying phase transformations. These include temperature and concentration in solidification,
vector potential in ferro-magnetic materials and strain in solid state precipitation. The free energy of
such systems, written in terms of these fields and the order parameter, can be used to derive Euler-
Lagrange equations for the system or dynamical equations that describe microstructure evolution in
non-equilibrium phase transformations. The reader is referred to Ref. [27] for examples.

This chapter expands on the topic of mean field theory with two examples. The first derives a
model of a solid that couples density and strain to a new order parameter for vacancy concentration. It
is shown that this is a minimal model for describing elastic deformation in solids that incorporates the
role of vacancies. The second example studies fluctuations of a Ginzburg-Landau functional around
the saddle point approximation, showing how the inclusion of fluctuations renormalizes the coe�cients
of the mean field free energy functional from their original form in the mean-field Hamiltonian.

5.1 Landau Theory of Solids

Typically, deformation in solids is treated through a Hooke-type stress-strain response. However,
deformation of real solids is intimately coupled to plastic processes, the latter of which are related to
dislocations and vacancies. A proper hydrodynamic treatment of solids thus requires the inclusion of
vacancy e↵ects into the thermodynamics of deforming solids. Here, we will introduce a new vacancy
order parameter which couples to density and strain to provide an accurate representation of solids.

5.1.1 Vacancy order parameter

Consider a solid with a unit cell structure with volume V and Ns lattice sites per unit cell. Denote
the total number of atoms occupying the unit cell N , and the number of vacant sites in the unit cell
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by Nv. In terms of these occupancy definitions, we define

N = Ns �Nv atoms per unit cell (5.1)

n = N/V atomic number density (5.2)

⌦0 = V/Ns volume per site of unit cell (5.3)

nv = Nv/V vacancy density (5.4)

Substituting Eq. (5.1) into Eq. (5.2) also gives the atomic occupancy fraction,

n =
Ns

V
� Nv

V
=

1

⌦0
� nv (5.5)

=) ⌦0 n = 1� ⌦0 nv = 1� �v (5.6)

where �v = ⌦0nv is the fraction of vacancies in the unit cell. Equation (5.6) expresses the fraction of
occupied sites in the unit cell as one minus the fraction of vacancies in the unit cell.

It is instructive to take the variation of the atomic density n starting from Eq. (5.5). This gives,

�n = �

✓
1

⌦0

◆
� �nv = �d⌦o

⌦2
0

� �nv

=) ⌦0�n = ��⌦0

⌦0
� ⌦0�nv (5.7)

The change of geometry of a unit cell is coupled to strain changes; in particular, relative changes to
its volume are equal to the hydrostatic strain according to

�⌦0

⌦0
= uii, (5.8)

where the double index subscript “ii”” implies summation. Substituting Eq. (5.8) into the last line of
Eq. (5.7), gives after re-arranging,

⌦0 �nv = � (uii + ⌦0�n) (5.9)

Equation (5.9) shows that the change of vacancy fraction relative to the original number of lattice
sites is due to two factors, hydrostatic strain of the unit cell and change of atomic occupancy relative
to the original number of lattice sites.

The above considerations suggest introducing a new order parameter,  v = ln(1 � �v), that
describes the relative change of vacancy fraction in a solid. This order parameter satisfies

� v = � ��v

1� �v

=
� (⌦0n)

⌦0n
=
�n

n
+
�⌦0

⌦0

=
�n

n
+ uii (5.10)

it is noteworthy that if there is a negligible change of vacancies, as happens at low temperatures in
metals, then ��v = 0 and we recover the usual �n/n = �uii, which means that the change of density
is due only to the hydrostatic strain of the unit cell of the crystal. At temperatures near the melting
point or high operating temperatures of metals ��v 6= 0 and so vacancies must be included into the
description of the solid state. The vacancy order parameter can be seen to vary from zero in an ideal
solid without vacancies and some non-zero value when vacancies are present.
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5.1.2 Vacancy-strain coupling in the free energy

When a solid deforms at a certain temperature its free energy can change due to changes in local
density (i.e. atoms/volume) and local strain changes (stretching of lattice planes at constant density).
Denote density here by n and strain by uij = (@iuj + @jui) /2, where u = (ux, uy, uz) is the local
displacement vector. Up to quadratic order in these fields n and uij , a Landau-like free energy of a
solid can be expanded relative to an undeformed state (u0

ij
= 0) at a reference density n0 as

f(n0 + �n, uij) = f(n0) +

✓
@f

@n

◆

n0

�n+
A

2

✓
�n

n0

◆2

+
1

2
uijK̄ijklukl +D

✓
�n

n0

◆
uii · · · , (5.11)

where n0 is a reference density of the undeformed state. Here, the temperature T is suppressed
explicitly in Eq. (5.11) but is implicitly in the dependance of the coe�cients. The first term is a
reference energy of the undeformed solids. The second term is the first order coupling of density to
chemical potential, the third is the quadratic Hooke’s law type deformation energy, with Kijkl being
the tensor of elastic coe�cients. The last term is the coupling of strain to density changes.

As mentioned in the last section, a proper thermodynamic treatment of solids should consider the
vacancy order parameter � v in its Landau free energy expansion. The expansion of Eq. (5.11) to
quadratic order in n and uij is su�cient to do this. Namely, setting n! n0 to denote the base density
implied by the variation in Eq. (5.10), and substituting it into Eq. (5.11) gives, after re-arranging,

f(n0 + �n, uij) = f(n0) + µ0 �n+
A

2

⇢
�n

n0
+ uii

�2

+ (D�A)

⇢
�n

n0
+ uii

�
uii +

1

2
uijK

v

ijkl
ukl

= f(n0) + µ0 �n+
A

2
� 

2
v +

1

2
uijK

v

ijkl
ukl + (D �A) � v uii, (5.12)

where the elastic tensor Kv

ijkl
is defined by

K
v

ijkl
= K̄ijkl + (A� 2D) �ij�kl, (5.13)

and where the linear term coupling to �n in the third term of Eq. (5.11) has been identified with the
chemical potential µ0 at the reference density n0. Equation (5.12) is a Landau-type of theory of a
solid that is expanded to quadratic in vacancy and strain order parameters, with a linear coupling
between the two. It is noteworthy that the elastic constant tensor Eq. (5.13) takes on an important
correction that emerges directly due to the coupling of vacancies to strain.

5.1.3 Vacancies in the stress tensor

The stress tensor in a solid can be decomposed as follows 1,

�ij = �p�ij + hij , (5.14)

where the first term in Eq. (5.14) is the [isotropic] thermodynamic pressure, and the second component
includes isotropic and non-isotropic stresses contributions arising from displacement of crystallographic
planes relative to each other. The stress component hij is specific to solids where inter-atomic planes
take on specific equilibrium spacings as a result of breaking translational invariance. These terms are
examined further below.

1
Equation (5.14), as well as some other results used in this chapter, will be shown explicitly in Chapter 6 where the

thermodynamics of a moving material volume will be examined (the reader is also referred to Ref. [5]) for a derivation

of this result from dynamic or static arguments)
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it will be shown in Chapter 6 that pressure for solids is given in terms of the free energy (in the
notation of this chapter) as

� p = (f � µn)
uij

=

✓
f � n

@f

@n

◆

uij

(5.15)

where T is temperature, f is free energy density, µ is the chemical potential per atom and n is the
mass density. This is well-known thermodynamics result, but note that when applied specifically to
solids, the strain is held constant when taking the derivative of the free energy. This implies that
the thermodynamic pressure p takes into account only density changes due to atomic occupation and
vacancies.

To obtain an expression for hij in Eq. (5.14), we combine the change of pressure derived from
Eq. (5.15), i.e. �dp = df � µdn � ndµ, with the relationship �dp = �sdT � ndµ + hijduij , to be
derived in Eq. (6.36) (neglecting the second order velocity contributions here). This yields,

df = �sdT + µdn+ hijduij (5.16)

Equation (5.16) immediately yields

hij =
@f

@uij

����
T,n

(5.17)

Equation (5.17) relates that part of the stress tensor associated with strain in the spacing between
atomic planes (or mass density waves) to the the free energy of the solid.

Using the free energy derived in Eq. (5.12) allows us to calculate explicit forms for the components
of the stress tensor in Eq. (5.14). Starting with Eq. (5.17), the first line of Eq. (5.12) gives, after
collecting terms,

hij = K̄ijklukl +D
�n

n0
�ij (5.18)

It will hereafter be assumed that hij = 0 in the undeformed reference state where density n = n0

and uij = u
0
ij

= 0. This can be understood by assuming, for example, that the reference state is in

equilibrium surrounded by some fluid at some pressure �0
ij
= �p0�ij , and hence, in the reference state,

hij = h
0
ij
= 0.

To calculate the change of pressure from the reference state, �p = p � p
0, we first return to the

di↵erential relation �dp = �sdT � ndµ+ hijduij . To linear order in the strains 2, this yields,

dp = sdT + ndµ (5.19)

Making the approximation that dp! �p and dµ! �µ (also dT ! �T ), we write

�p = s�T + n�µ, (5.20)

where change of chemical potential �µ is evaluated from Eq. (5.12) as follows,

µ =
@f

@n

����
uij

= µ0 +A
�n

n
2
0

+D
uii

n0

=) �µ = A
�n

n
2
0

+D
uii

n0
(5.21)

2
Substituting Eq. (5.18) into hijduij yields an expression that is second order strains, which we neglect in linear

elasticity.
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and where �µ = µ � µ(n0). Substituting Eq. (5.21) into Eq. (5.20), with n ! n0, and assuming
isothermal conditions, gives

�p = A
�n

n0
+Duii (5.22)

Substituting both Eq. (5.22) and Eq. (5.18) into the change form of Eq. (5.14), i.e. ��ij = ��p�ij+�hij ,
and recalling that �hij = hij � h

0
ij
with h

0
ij
= 0, gives

��ij = �
⇢
A
�n

n0
+Duii

�
+

⇢
K̄ijklukl +D

�n

n0
�ij

�
(5.23)

Using Eq. (5.13) to write Kijkl = K
v

ijkl
� (A� 2D) �ij�kl, and substituting for K̄ijkl into Eq. (5.23)

gives, after some re-arranging,

��ij = (D �A)

⇢
�n

n0
+ uii

�
�ij +K

v

ijkl
ukl

= (D �A) � v �ij +K
v

ijkl
ukl (5.24)

Equation (5.24) relates the changes in the stress state of a solid (relative to an equilibrium state) to
both Hookian type elastic strains and to the change of vacancies in the solid. The di↵usion of vacancies
is a well known e↵ect in materials science; while it is negligible at low temperatures, it becomes crucial
at higher temperatures, lading to phenomena such as creep, deformation mediated precisely by the
di↵usive transport of vacancies. We’ll study hydrodynamics of solids in Chapter 6, where we will see
how � v a↵ects the displacement modes of a solid.

5.2 Fluctuations in Ginzburg-Landau Theory

Landau mean field theory typically begins by assuming that there exists an order parameter field
(denoted by �(x) here) that can describe the local ordering of a system undergoing a phase transfor-
mations. One can then, in principle, restrict the trace of the partition function over the possible states
of the order parameter, each state weighted by the microscopic density of states corresponding to said
order parameter configuration. By restricting ourselves to the state of this trace that minimizes the
Boltzman weight of the partition functions, we can obtain a mean field free energy. If spatial vari-
ations are neglected, the mean field free energy can help elucidate –despite its simplicity– the main
features of symmetry breaking cause discontinuity in second derivatives in a 2nd order transition, or
the discontinuous break in symmetry from the high temperature phase that lead to discontinuous 1st

derivatives in a first order transition. When � is allowed to have spatial variations, we can extract a
mean field solution that incorporates an inter-phase interfaces. Here, we consider functional fluctua-
tions around the saddle point approximation of �(x) and show that this leads to the re-normalization
of the coe�cients of the Ginzburg-Landau free energy functional that emerges from the original form
in the mean field Hamiltonian.

5.2.1 Expansion of partition function around the mean field solution

Consider the phenomenological Hamiltonian given by

H[�] =

Z ⇢
K

2
|r�|2 � r

2
�
2 +

s

4
�
4 + h(x)�(x)

�
dx (5.25)
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where �(x) is a spatially dependent order parameter describing a system. The local average of �(x)
describes some local quantity over many atomic lengths. It varies over some correlation length ⇠ that
depends on whether we are talking about a 1st or second order phase transformation. Assuming we
can suitably define any microscopic configuration of the system by some instance of �(x), we can
formally define the partition function of the system by

QV =

Z
D(�) e�H[�]/kBT (5.26)

where the notation D(�) means that we are to sum the Boltzman factor e�H[�]/kBT over all possible
configurations of the field �, weighting each term in this sum by the density of microscopic states
compatible with each configuration of �(x). It is instructive to analyze some of the properties of QV

in the limit of small fluctuations of the order parameter.
As with most non-linear models, the partition function in Eq. (5.26) has no solution where

Eq. (5.25) is concerned. To proceed we expand the Hamiltonian H[�] around some presumed equilib-
rium state �0(x) (that can possibly have spatial variations in it). This leads to

H[�(x)] = H[�0] +

Z
dx

�H

��(x)

����
�0

��(x) +
1

2

Z
dx

Z
dx0

��(x)
�
2
H

��(x)��(x0)

����
�0

��(x0) + · · · (5.27)

Keeping up to second order terms in this functional expansion of H[�] and substituting the truncated
functional series in Eq. (5.26) leads to

QV =

Z
D(�) e

��

8
<

:H[�0]+

R
dx �H

��(x)

�����
�0

��(x)+ 1
2

R
dx

R
dx0

��(x) �
2
H

��(x)��(x0)

���
�0
��(x0)

9
=

;
(5.28)

In the saddle point approximation, the most likely state of the system occurs at an extremum of
H[�], which gives the equilibrium properties of the system described by Eq. (5.25). This state is given
by the solution of the Euler-Lagrange equation for H[�],

�H

��(x)

����
�0

= �Kr2
�0(x)� r�0(x) + s�

3
0(x)� h(x) = 0 (5.29)

Eq. (5.29) implies that the second term in the exponential expansion of Eq. (5.28) is zero. Moreover,
the factor exp (�H[�0]/kBT ) can be brought out of the functional trace implied by Eq. (5.28) as the
trace is scanning variations around �0(x). We can thus to re-write QV as

QV = e
�H[�0]/kBT

Z
D(�)e

�
�

2

 R
dx ��(x)

R
dx0 �

2
H

��(x)��(x0)

���
�0
��(x0)

!

(5.30)

We next calculate the second functional derivative of H[�], which gives

�H

��(x)��(x0)
=

�

��(x)

✓
�Kr2

x0�(x0)� r�(x0) + s�
3(x0)� h(x0)

◆

= �Kr2
x0�(x0 � x)� r�(x0 � x) + 3s�2(x0)�(x0 � x)

=

✓
�Kr2

x0 � r + 3s�2(x0)

◆
�(x0 � x), (5.31)
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where rx0 denotes di↵erentiation with respect to x0. Substituting �2(x0) ! �
2
0(x

0) in Eq. (5.31) and
substituting the result into Eq. (5.30) gives, after two integration by parts on the gradient term,

QV = e
�H[�0]/kBT

Z
D(�)e

�
�

2

R �
�K ��(x)r2

��(x)�r��
2(x)+3s�20(x) ��

2(x)
�
dx

(5.32)

Since the second exponential factor in Eq. (5.32) is of Gaussian form, it is possible to explore functional
fluctuations of the order parameter field around its saddle point �0(x). To do so, we will re-write the
Hamiltonian in the exponential of Eq. (5.32) as

�H[�] =

Z
dx

Z
dx0

��(x)

⇢
�K

2
r2

x0 �
r

2
+

3s

2
�
2
0(x

0)

�
�(x0 � x) ��(x0) (5.33)

which is often done when deriving QV by functional integrals of a Guassian form.

5.2.2 Guassian integration of QV

To analyze �H it will be assumed that ��(x) can be expressed in a discrete Fourier series as follows

�� (x) =
1

V

X

k

cke
ik·x (5.34)

where V is the volume of the system, and where it is tacitly assumed that the sum has a high-k cuto↵
⇤c since we are dealing with a system whose smallest microscopic length scale is on the order of a
few atomic lengths. Also, since ��(x) describes fluctuations near the saddle point solution, we will
assume that it varies on much shorter length scales than �0(x). As such, the sum in Eq. (5.34) will
also be assumed to have a lower k cutto↵ ⇤L, i.e. ⇤L < k < ⇤c. The discrete representation of the
delta function will be approximated by

�(x0 � x) =
1

V

X

k

e
ik·(x0

�x)
, (5.35)

where the sum over wave modes is over the same range 3 as that in Eq. (5.34). Furthermore, the
k-space delta function can be represented by the standard form

Z
dx e

i(k�k0)·x = V �(k� k0) (5.36)

To proceed, Eq. (5.34) and Eq. (5.35) are substituted for Eq. (5.33), which gives
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e
i(k�k0)·x (5.37)

3
If the reader objects to representing the delta function on this restricted k space domain, one can also proceed by

completing the
R
dx0

integral in Eq. (5.33) and then simply deal with Eq. (5.34) to represent ��(x) in the resulting

expression for �H.
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Pulling through
R
dx and applying the integration on the rightmost exponential of Eq. (5.37) with

argument (k� k0) · x, removes, after using Eq. (5.36), the sum over the k0 vectors. This yields

�H =
1

V 2
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dx0
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X
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↵

2
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2
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e
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(5.38)

Pulling through
R
dx0 and applying the integration to the remaining exponential now removes the sum

over the k00 vectors on the first line of Eq. (5.38), yielding

�H =
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X

k

|ck|2
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↵

2
|k|2� r
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o
+
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2V 2
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0(x

0)ei(k+k00)·x0
(5.39)

To simplify the second term in Eq. (5.39), it is noted that ��(x) represents small fluctuations
of �(x) around the saddle point solution �0(x). This is illustrated schematically in Fig. 5.1. Thus,

Figure 5.1: Illustration of fluctuations (wiggles) of the order parameter �(x) around its saddle point
solution �0(x), which varies on much longer length scales. For illistrastive purposes �0(x) is shown
here to have the classic hyperbolic tangent-like form characteristic of domain walls or solid-liquid
interfaces.

while ��(x) is assumed to be composed predominately of Fourier modes bound by ⇤L < k < ⇤c,
�0(x) is assumed to smooth on over these length scales, as it varies on the larger scales that define a
domain walls, solid-liquid interface, etc. In other words, W⇤L � 1, where W represent the correlation
length that control variations in the form of �0(x). These considerations imply that that the factor
exp{i (k+ k00) · x} in the integrand of Eq. (5.39) oscillates very rapidly compared to the variations
�
2
0(x), except in the neighbourhood of k00 = �k. As a result, the integral in Eq. (5.39) can be

approximated as

Z
dx0

�
2
0(x

0)ei(k+k00)·x0 ⇡ �{k,�k00}

Z
dx0

�
2
0(x

0), (5.40)
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where �i,j is the Kronecker delta function. This allows us eliminate the k00 sum in second term
Eq. (5.39) and re-write Eq. (5.39) as
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k

|ck|2
n
↵

2
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2

o
+
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2V 2
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2
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2
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2
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�
|ck|2 (5.41)

It is recalled that the sums in Eq. (5.39) are assumed to have the aforementioned k space limits.
Moreover, the sums are assumed to only go over half the k space since ��(x) is real and thus c⇤k = c�k.

To carry out the functional integration in the second factor of Eq. (5.32), it is convenient to re-write
the second line of Eq. (5.41) in discrete form as

�H[�]

kBT
=
X

i

X

k

�x
d

2KBT

n
↵ |k|2 � r + 3s�20 (xi)

o

| {z }
�(k,�i)

|c̃k|2 , (5.42)

where d is the dimension of space, and where the ck have been made dimensionless by rescaling them
to c̃k = ck/L

d. In arriving at Eq. (5.42) use was made of the following,

V = L
d (5.43)

1

V

Z
dx = 1 (5.44)

Z
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X

i

�xi (5.45)

Breaking up c̃k into its real and complex parts as c̃k = c̃
R

k + i c̃
I

k, the functional integral in Eq. (5.32)
becomes
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(5.46)

In going from the first to second lines of Eq. (5.46) the definition of a functional integral was applied,
i.e., summing over all field fluctuations ��(x) is equivalent to summing over the real and complex
parts of the coe�cients c̃k, whihc vary the possible states of ��(x) through Eq. (5.34). The last line of
Eq. (5.46) is pedantic but meant to emphasize that the solution of a product trivial Gaussian integrals.
Completing the above integrals gives

Z
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(5.47)
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The 1/2 in the last line of Eq. (5.47) is added in order to allow the sums in k space to vary over all
k space. It is also noted that the argument of the exponential in Eq. (5.47) is dimnesionless as the
units of the coe�cients r and s are J/L

d and ↵ has units J m
2
/L

d. The above is an application of
functional intergration. Readers wishing to learn more details on functional integration are referred
to the text by Binney [3].

Taking the last line of Eq. (5.47) into continuum space requires that we apply Eq. (5.45) backwards
and take the limit

P
k!

R
d
dk/(2⇡)d. Doing so gives

QV = const ⇥ e
�H[�0]/kBT

e
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2
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(2⇡)d
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(5.48)

where the re-scalings ↵0 = ↵/kBT , r0 = r/kBT , s0 = s/kBT have been made. The constant is given by
exp

�
�(1/2)

P
k

P
i
�x

d
/2⇡

�
and is unimportant as it will merely add a constant to the free energy,

which does not a↵ect any of its thermodynamics. Using the definition F = �kBT lnQV finally gives

F [�(x)] = F [�0(x)]�
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(5.49)

5.2.3 Renormalization of free energy coe�cients

One can interpret the extra term beyond F [�0] in Eq. (5.49) as adding a correction to the true free
energy beyond those that arise soley form the saddle point approximation. E↵ectively, this extra term
renormalizes the originall coe�cients of F [�0]. To so see this, consider fluctuations of �(x) around the
bulk phase region of �0(x), which we denote �0(±1) since these occur far from an interface, where
�0(x) is constant. Furthermore, suppose that Eq. (5.49) can be written as

F [�(x)] =

Z n
↵e↵

2
|r�|2 � re↵

2
�
2 +

se↵

4
�
4
o
dx (5.50)

Then, the second variational derivative of Eq. (5.49) gives re↵ according to

re↵ = � �
2
F [�(x)]

��2

����
�=�(±1)

= r
0 � 3s0kBT

Z
d
dk

(2⇡)d

⇢
1

↵0|k|2 � r0 + 3s0�20(±1)

�
, (5.51)

Assuming as an example, that we are considering magnetic domain wall solutions. Above Tc �0(±1) =
0, while below Tc it would have two non-zero values. Considering the order parameter close to and
above Tc (where �0 = 0) also allows us to compute a correction for the critical transition temperature
Tc by considering the renormalized re↵ . The fourth variational derivative of Eq. (5.49) gives se↵

according to

se↵ =
�
4
F [�(x)]

��4

����
�=�(±1)

= s
0 � 54

6
(s0)2kBT

Z
d
dk

(2⇡)d

⇢
1

(↵0|k|2 � r0)2

�
, (5.52)

Calculating the correction for ↵e↵ cannot be derived from considering the first variational of F [�(x)]
as it it becomes convolved with the other parameters. As it turns out, that at this order of Guassian
fluctuations, the parameter ↵e↵ = ↵

0.
This analysis shows that the coe�cients of the free energy of Model A used in phase filed modelling

are actually renormalized from those that enter the Hamiltonian from which it can be derived from
the partition function.
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Chapter 6

Hydrodynamics of Solids

Recent years have seen the explosion of so-called phase field models to describe the spatiotemporal evo-
lution microstructure in non-equilibrium phase transformations. These models couple slow quantities,
like an order parameter field, to one or more other mesoscale fields such as temperature, magnetism,
strain, etc. Their coupled evolution is described by a set of stochastic di↵erential equations that de-
scribe the dissipative minimization of free energy functional of the evolving system. Fields of conserved
quantities are governed by a conservation law whose flux is proportional to local chemical potential
gradient, where the chemical potential is itself a variational derivative of a free energy functional.
Non-conserved quantities are governed by simple gradient flow. Phase field models are examples of a
more general class of hydrodynamic theories that describe the evolution of broken symmetry and/or
conserved variables that, while spatially extended, represent a [locally] coarse grained description of
a material (i.e. a many body system).

A classical example that one thinks of when hearing the word “hydrodynamic equations” is the
Navier-Stokes equations. These describe the coupled evolution of density, momentum and energy,
all slowly varying quantities that are conserved over the whole system. Hydrodynamic equations are
mathematically closed by combining local conservation laws with constitutive relations for fluxes of
mass, momentum and energy back to the various slowly varying quantities themselves [5]. While the
word “hydrodynamics” typically conjures up images of flowing fluids, it is also applicable to solids
and other systems as well. A hydrodynamic description of a solid must consider conservation of mass,
momentum and energy, as well as strains, which reflect broken translational symmetries that emerge
in crystals. In addition, solids also require another collective variable to describe their hydrodynamics,
that associated with vacancy density [25, 5], which we studied in Chapter (5).

This Chapter will examine the hydrodynamics of solids. Beyond being important in its own
right, sketching out a framework that examines the collective modes of density, momentum, strain
and vacancy di↵usion in solids will prove useful later on when we consider the dynamics of the PFC
model, a theory based on a DFT-type of density order parameter and which can form ordered solid
phases.

6.1 Microscopic Operators and Conservation Laws

Begin by considering a deforming continuum. At this point, we’ll keep it general and not specify
until we are forced to whether we are talking about a fluid or solid. The continuum is assumed to be
divided into small volume elements �V that can deform but are otherwise connected without voids.
Each volume will be treated locally as a translating system that comprises of a large number of atoms.
Viewed from the lab frame, a reference point (e.g. the centre) of �V is tracked by some position
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x(t) and has a corresponding velocity v(t). Internally, �V is assumed to contain N particles, each of
which is assumed to be positioned and moving around randomly within the volume. The volume �V

is itself assumed to be in equilibrium with respect to the variables defining its local thermodynamic
state (e.g. T, P,�V , N, etc). Further details on these considerations are summarized in the cartoon
in Figure 6.1.

Figure 6.1: Left figure shows a volume element �V that is assumed to be part of a continuum. The
position and velocity vectors tracking a reference point in the volume from the lab frame are x(t) and
v(t), respectively. The right frame is a zoom-in of �V , showing that it comprises of many particles
positioned and moving randomly within the volume. The position and velocity of a random particle
↵ within �V relative to a coordinate system fixed in the volume element are denoted x0

↵(t) and
v0
↵(t), respectively (the t label is supressed in the zoom-in cartoon for clarity). The position of the

particle ↵ with respect to the lab frame is thus x↵(t) = x(t) + x0
↵(t), and its lab-frame volocity is

v↵(t) = v(t) + v0
↵(t). It is assumed that v0

↵(t) and v(t) are uncorrelated, and that |v(t)|⌧ |v0
↵(t)|.

We define three microscopic operators from which coarse grained averages of three key hydro-
dynamic variables (and associated co-called hydrodynamic modes) can be calculated. These are the
momentum density (ĝ(x, t)), mass density (⇢̂(x, t)) and energy density ("̂(x, t)) and are given, respec-
tively, by

ĝ (x, t) =
X

↵

p↵� (x� x↵(t))

⇢̂ (x, t) =
X

↵

m� (x� x↵(t))

"̂ (x, t) =
X

↵

p
2
↵

2m
� (x� x↵(t)) +

X

↵

X

� 6=↵

U (x↵(t)� x�(t)) �(x� x↵(t)), (6.1)

where ↵ and � are particle indices that count over particles in the volume �V , m is the mass of each
particle (assumed identical here for simplicity), x↵(t) = x(t) + x0

↵(t), p↵ = m (v(t) + v0
↵(t)) is the

momentum of particle ↵ (with p↵ denoting its magnitude) and U(x↵ � x�) is the potential energy
between two particles, where a central force field is assumed throughout.
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As formal distributions, the three microscopic operators fields in Eq. (6.1) satisfy the mass, mo-
mentum and energy conservation laws, which are expressed as

@⇢̂(x, t)

@t
= �r · ĝ

@ĝ(x, t)

@t
= �r · ⇡ij

@"̂(x, t)

@t
= �r · J", (6.2)

where J" is the microscopic energy flux and ⇡ij is the momentum flux tensor. It is noteworthy that
the conservation laws in Eq. (6.2) apply equivalently to the microscopic operators as they do to their
average quantities ⇢ (x, t) = h⇢̂(x, t)i, g(x, t) = hĝ(x, t)i and " (x, t) = h"̂(x, t)i [5], where, in the latter
case, averages of these hydrodynamic variables are driven by averages of the corresponding fluxes, i.e.
⇡ij ! h⇡iji and J" ! hJ"i.

6.1.1 Averages of microscopic operators

In order to use mass, momentum and energy density operators, their meso-scale averages are required
since hydrodynamics deals with a coarse volumes. This subsection will derive the form of local ther-
modynamic averages of the density, momentum and energy density using the microscopic operators
in Eq. (6.1). In addition, it will be useful to know how these averages translate between lab frame
co-ordinates and co-ordinates relative to the co-moving with the reference volume �V .

Starting with the mass density, its average is obtained by ensemble averaging the microscopic
density operator,

⇢ (x, t) = h⇢̂
�
x� x(t)� x0

↵(t)
�
i =

*
X

↵

m

0

@x� x(t)| {z }
x0

�x0

↵(t)

1

A
+

=

*
X

↵

m
�
x0 � x0

↵(t)
�
+

= ⇢
0(x0

, t), (6.3)

where averages are taken with respect to particle positions within the volume �V , and x0 = x� x(t)
translates the instantaneous measurement (i.e. at time t) from a point in the lab frame to a point
relative to the rest frame of �V . The notation ⇢0 denotes a density measurement made entirely from
withing �V . Equation (6.3) shows, not surprisingly, that the average density in �V measured from
within the co-moving frame (with respect to co-moving coordinates (x0

, t)) is the same as the average
density in �V measured relative the lab frame (with respect to lab frame coordinates (x, t)).

Proceeding similarly for the momentum, its average translates between the two frames as

g(x, t) = hĝ(x, t)i =
D X

↵

p↵� (x� x↵(t) )
E

=
D X

↵

m
�
v(t) + v0

↵(t)
�
�
�
x� x(t)� x0

↵(t)
� E

=
D X

↵

mv(t) �
�
x0 � x0

↵(t)
� E

+
D X

↵

mv0

↵(t) �
�
x0 � x0

↵(t)
� E

= ⇢
0(x0

, t)v(t) + g0(x0
, t)

= ⇢ (x, t)v(t), (6.4)
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where it is noted that the velocity v(t) comes out of the average operation in going from the third to
fourth lines of Eq. (6.4) since h· · · i denotes ensemble averages over particle positions and velocities
relative to the co-moving frame of reference fixed in �V . The second term on the third line is denoted
g0(x0

, t) and is the average momentum in �V as measured relative the co-moving frame (uses rest-
frame coordinates (x0

, t)). Here, it is assumed that the microscopic motions of particles within �V

are random and and much more rapid than the hydrodynamic motion of �V . It will thus be assumed
that g0(x0

, t) = 0 hereafter [5].
The translation of the average of the internal energy density in �V follows similarly by taking the

average of the last operator in Eq. (6.1),

" (x, t) =

*
X

↵

p
2
↵

2m
� (x� x↵(t)) +

X

↵

X

� 6=↵

U (x↵(t)� x�(t)) �(x� x↵(t))

+

=
DX

↵

m

2

�
|v(t)|2 + 2v(t) · v0

↵(t) + |v0

↵(t)|2
�
�
�
x� x(t)� x0

↵(t)
� E

+
DX

↵

X

� 6=↵

U
�
x0

↵(t)� x0

�
(t)
�
�(x� x(t)� x0

↵(t))
E
, (6.5)

where x↵(t) � x�(t) = x0
↵(t) � x0

�
(t) has been used since U depends only on position di↵erences.

Equation (6.5) gives rise to four terms,

" (x, t) =
|v(t)|2

2

DX

↵

m �
�
x0 � x0

↵(t)
� E

| {z }
⇢0(x0,t)

+v(t) ·
D X

↵

mv0

↵(t) �
�
x0 � x0

↵(t)
� E

| {z }
g0(x0,t)

(6.6)

+
DX

↵

m

2
|v0

↵(t)|2 �
�
x0 � x0

↵(t)
�
+
X

↵

X

� 6=↵

U
�
x0

↵(t)� x0

�
(t)
�
�(x0 � x0

↵(t))
E

| {z }
"0(x0,t)

,

where it is recalled that x0 = x�x(t) translates distances relative to a reference point in the co-moving
frame of �V ; it is also recalled that v(t) and |v(t)|2 come out of the ensemble averages. Each term in
Eq. (6.6) is identified in the underbraces for clarity. By Eq. (6.3) the first becomes ⇢ (x, t). The second
is the average momentum relative to the co-moving reference frame, which vanishes. The last term
"
0(x0

, t) is the internal energy density in �V measured relative to a rest frame fixed in �V (measured
in co-moving co-ordinates (x0

, t)). It can be sees as the rest-frame energy density in �V . Following the
notation of Ref. [5], it will be denoted as "0(x, t) when measured relative to the lab frame co-ordinates.
With these identifications and definitions Eq. (6.6) becomes

" (x, t) = "0(x, t) +
1

2
⇢(x, t)v2(t) (6.7)

The above derivations have allowed us to compute the averages of mass, momentum and energy
densities in a system represented by the volume �V . As �V ! dV and the volume becomes in-
finitesimal, these quantities will become constant within �V and come to represent thermodynamics
properties between x! x+ dV in a hydrodynamic system.

6.2 Adding Momentum into Thermodynamics

In order to derive hydrodynamic equations of a system, it is first required that its relevant hydrody-
namic quantities are integrated into the statistical mechanics of a representative volume element of
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said system. In the case of a deforming continuum, this translates to first working out the Hamiltonian
of the system of particles moving with �V , and then using this to determine its partition function and
free energy, which now will incorporate motional e↵ects of the volume. Finally, this make it possible
to examine the thermodynamics of the moving system, leading to an important equation for entropy
production that will be the basis of the next section that works out the form of hydrodynamic fluxes.

6.2.1 Mechanics of the moving volume �V

Consider the Lagrangian of the system of particles in the moving volume element �V examined in
the last subsection 1. This is given by

L =
1

2

NX

↵=1

m
��v(t) + v0

↵(t)
��2 �

X

↵

X

� 6=↵

U
�
x0

↵(t)� x0

�
(t)

�

=
1

2

NX

↵=1

3X

i=1

m
�
vi(t) + v0↵i

(t)
�2 � U

�
x0

↵(t)
 

(6.8)

where U {x0
↵(t)} is shorthand notation for the potential energy expression on the first line of Eq. (6.8),

and the velocities are expressed in their component form in the last line of Eq. (6.8). In the notation of
Hamiltonian mechanics, the canonical co-ordinates become q↵(t) ! x0

↵(t) and the their time deriva-
tives q̇↵(t)! ẋ0

↵(t) = v0
↵(t) for ↵ = 1, · · · , N . The canonical momentum of particle ↵ (in component

form) is given by

p↵i
(t) =

@L
@ v0↵i

= m
�
vi(t) + v0↵i

(t)
�
, (6.9)

or in vector form, p↵(t) = m (v(t) + v0
↵(t) ). The total Hamiltonian of this system is given by

HT =
NX

↵=1

3X

i=1

p↵i
(t) q̇↵i

(t)� L

=
NX

↵=1

3X

i=1

m
�
vi(t) + v0↵i

(t)
�
v0↵i

(t)� L

=
NX

↵=1

m
�
v(t) + v0

↵(t)
�
· v0

↵(t)� L (6.10)

Substituting the Lagrangian from Eq. (6.8) into Eq. (6.10), expanding and collecting terms, gives,

HT =
NX

↵=1

m

2
|v0

↵(t)|2 + U
�
x0

↵(t)
 
�

NX

↵=1

m

2
|v(t)|2

=
NX

↵=1

|p0
↵(t)|2
2m

+ U
�
x0

↵(t)
 

| {z }
HR(x0

↵,p
0
↵)

�
NX

↵=1

m

2
|v(t)|2

= HR(x
0

↵,p
0

↵)�
N m

2
|v|2 (6.11)

1
The velocity v(t) of the moving volume �V is denoted as a function of time throughout this section. However, the

results derived from Newtonian mechanics translate between the lab frame the reference frame of �V only for Galilean

translations of a uniform continuum, i.e., when v(t) = constant. We will hereafter consider the velocity of �V relative

to the lab frame to be small enough such as to satisfy v(t) ⇡ constant in the mechanics treatment that follows. Results

obtained will be assumed to hold in hydrodynamic limit where v(t) 6= 0, but small compared to microscopic velocities.
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where the time variable was suppressed in the last line for clarity. The last line of Eq. (6.11) expresses
the total Hamiltonian in terms of the rest-frame Hamiltonian (written in terms of positions and
velocities relative to the co-moving reference frame) minus the total lab frame kinetic energy of the
volume �V .

An alternate form of the Hamiltonian HT can be written by substituting |v0
↵|2 = |v + v0

↵|2 �
|v|2 � 2v · v0

↵ for the first term on the first line of Eq. (6.11). Doing so, and noting that U{x0
↵} ⌘

U

⇣
x0
↵ � x0

�

⌘
= U (x↵ � x�) ⌘ U{x↵} gives,

HT =
X

↵

|p↵|2
2m

+ U{x↵}�
X

↵

mv ·
�
v + v0

↵

�

= HL(x↵,p↵)� v ·
 
X

↵

p↵

!

| {z }
P̃

= HL(x↵,p↵)� v · P̃ (6.12)

where it is recalled that the p↵ are given by Eq. (6.9). The quantitify P̃ in Eq. (6.12) is the total
momentum. It is equivalently given as the integral over �V of the momentum operator in Eq. (6.1),
namely,

P̃ =
X

↵

p↵ =

Z

�V

X

↵

p↵� (x� x↵(t)) d
3x =

Z

�V

ĝ(x, t) d3x (6.13)

A quantity that will be required in what follows is the mean of the total momentum P̃. Using
information from Eq. (6.4), this becomes

P = hP̃i =

Z

�V

hĝ(x, t)i d3x

=

Z

�V

⇢(x0
, t)v(t) d3x0 +

Z
g
0(x0

, t)| {z }
=0

d
3x0

= Nmv (6.14)

where the integrals on the second line of Eq. (6.14) have been translated to the co-moving reference
frame.

The last lines of Eqs. (6.11) and Eqs. (6.12) o↵er two equivalent ways to write the total Hamiltonian
of the system of particles in the volume �V , one with respect to positions and velocities measured in
the rest frame of the volume �V , and other with positions and velocities measured from the stationary
lab frame. Although not apparent, they are identical, implying that the lab frame Hamiltonian of the
volume being equal to the rest-frame Hamiltonian plus the kinetic energy of the volume �V , plus a
an extra term v ·

P
↵
p0
↵, which vanishes when averages are thus taken, making the average energy

exactly as in Eq. (6.7). It is also noted that the average of the rest frame Hamiltonian gives the rest
frame internal energy of the volume �V .

6.2.2 Statistical mechanics of the moving volume �V

Thus far, we have determined the local averages of key hydrodynamic quantities, and used these to
find the form of the Hamiltonian of a system comprising a moving volume element in a continuum.
The reason for this course of action is that we wish to investigate the volume’s statistical mechanics
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in order to derive a form for its free energy containing corrections due to its motion. From there, we
can derive expressions for the change of entropy of the volume, and by imposing the requirement of
dissipation/dissipationless entropy flow, it is possible to extract suitable forms for the mass, momentum
and energy fluxes governing the corresponding conservation laws.

The starting point is to consider the partition function of the system of a moving volume �V .
This is given by

ZN (T,�V,v) =

Z Z
e
��(HL{p↵,x↵}�P̃·v )

dx1, · · · , dxN , dp1, · · · , dpN (6.15)

where is it is recalled that P̃ is a function of the phase space co-ordinates, which is supressed in
Eq. (6.15) for clarity. The thermodynamics of the volume �V is obtained from Eq. (6.15) by the
relation [14]

ZN (T,�V,v) = e
��F (T,�V,N,v)

= e
��( hHLi�T hSi�hP̃i·v )

, (6.16)

from which the free energy of the volume is defined as

F (T,�V,N,v) = E � TS �P · v, (6.17)

where the definitions E = hHLi, S = hSi and P = hP̃i have been made. Equation (6.17) is the usual
free energy of a volume of N particles, with a correction for a translation at velocity v and having a
momentum P.

It is instructive to re-calculate the free energy of the moving volume �V again using the Hamil-
tonian form given in Eq. (6.11), written with co-ordinates in the �V co-moving frame of reference.
The partition function in this representation becomes

ZN (T,�V,v) =

Z Z
e
��(HR{p0

↵,x
0
↵}�Nm|v|2/2 )

dx1, · · · , dxN , dp1, · · · , dpN

= e
�Nm|v|2/2

Z Z
e
��HR{p0

↵,x
0
↵} dx1, · · · , dxN , dp1, · · · , dpN

| {z }
ZN (T,V,v=0)

, (6.18)

where the quantity indicated in the under-brace is the partition function written entirely in terms of
particle motions measured in the rest frame of �V . Taking logarithms of both sides of Eq. (6.18)
gives

F (T,�V, n,v) = �kBT lnZN (T,�V,v)

= �kBT lnZN (T,�V,v = 0)| {z }
F (T,�V,N,v=0)

�Nm|v|2
2

, (6.19)

where the quantity indicated in the under-brace of Eq. (6.19) is the free energy in the co-moving
reference frame of the volume �V . Equation (6.19) thus becomes

F (T,�V,N,v) = F0(T,�V,N)� Nm|v|2
2

, (6.20)

where F0(T,�V,N) denotes the rest-frame free energy of the volume �V .
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In closing this subsection, it is noted that from Eq. (6.17) the internal energy can be written as

E(S,�V,N,P) = F (T,�V,N,v) + TS +P · v (6.21)

Substituting the last line of Eq. (6.14) for P in Eq. (6.21), substituting F (T, V,N,v) from Eq. (6.20),
and noting that the entropy S remains the same in both lab and rest frames of �V , gives,

E(S,�V,N,P) = E0(S,�V,N) +
|P|2
2mN

, (6.22)

which is the extensive form of Eq. (6.7), i.e. integrating the former over the volume of �V gives
Eq. (6.22). Here, E0(S,�V,N) is the rest-frame internal energy. It is noted that v and P are
conjugate vasriables, with the former being intensive and the latter extensive.

6.2.3 Thermodynamics of the moving volume �V

This subsection will use information derived thus far to derive several expressions that relate changes
in thermodynamic potentials to changes in local thermodynamic and hydrodynamic variables. The
section culminates with an equation for the entropy change of �V , which will be used in the next
subsection to derive expressions for the fluxes driving the evolution of mass, momentum and energy
densities. Throughout this section, it will be assumed that the continuum in the volume �V supports
elastic deformations, without loss of generality.

The starting point is to revisit the first law of thermodynamics. Specifically, combine Eq. (6.22)
and Eq. (1.6) to yield a modified version of the first law of thermodynamics,

dE = TdS + �ijduij �V + µdN + v · dP (6.23)

where �ij denotes the stress tensor acting on the reference volume element �V and uij is the strain
tensor, defined as uij = (@iuj + @jui)/2, where u = (ux, uy, uz) is the local displacement of the solid.
The second term is a generalization of the usual �Pd (�V ) term that appears for isotropic materials.
Solids support shear modes, their main hydrodynamic modes of deformation. As a result, work can
be done on them by volume changes working against isotropic pressure, as well as by other modes of
mechanical deformation they support 2.

Next, consider the di↵erential of the free energy in Eq. (6.17),

dF = dE � TdS � SdT �P · dv � v · dP (6.24)

Substituting Eq. (6.23) into Eq. (6.24) gives the di↵erential of free energy as

dF = �SdT + �ijduij �V + µdN +P · dv (6.25)

Changes in the grand potential is similarly are obtained form the relation ⌦ = F �µN , which implies
that d⌦ = dF � µdN �Ndµ. Substituting Eq. (6.25) for dF into this expression for d⌦ gives,

d⌦ = �SdT + �ijduij �V �Ndµ�P · dv (6.26)

By consulting Eq. (6.23), Eq. (6.25) and Eq. (6.26), the driving force for momentum is derived from
each potential, each under di↵erence constraints, Namely

P = � @E

@v

◆

S,�V,uij ,N

= � @F

@v

◆

T,�V,uij ,N

= � @⌦

@v

◆

S,�V,uij ,µ

(6.27)

2
As a consistency check, when the stress is isotropic as in a fluid, �ij = �p�ij and duii = d(�V )/�V , which gives,

dW = �p�ij duij �V = �p (d(�V )/�V ) �V = �p d(�V ), which is the traditional expression for work in an isotropic

system.
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It is instructive to break up the stress tensor into the diagonal components (which gives the
pressure) and the non-diagonal parts that are responsible for shear deformation and only exist for
solids, which support shear. We follow the notation of Ref. [5] and write this as

�ij = �p�ij + hij , (6.28)

where the first term in Eq. (6.28) is isotropic and corresponds to the thermodynamic pressure, while
the second component represents a tensor conjugate to elastic strains uij (i.e. gradients of the displace-
ments, the broken symmetry variables of a solid) 3. This tensor is related to the elastic coe�cients of
a solid and its coupling to the uij describes elastic deformations energy in solids. (The derivation of
Eq. (6.28) is in the slides for PHYS657 and will be added here as an appendix at some point 4). The
first term accounts for density changes, which may include vacancies when vacancies are considered in
solids, as was done in Section 5.1.1. It is noted that the term hij has units of [J/m3], and it vanishes
for liquids. Substituting this decomposition of �ij into the above expressions for dE, dF and d⌦ gives
the following set of useful thermodynamic di↵erentials for the potentials applicable to a moving system
(e.g. the volume �V ),

dE = TdS � p d (�V ) + µdN + hijduij �V + v · dP
dF = �SdT � p d (�V ) + µdN + hijduij �V �P · dv
d⌦ = �SdT � p d (�V )�Ndµ+ hijduij �V �P · dv, (6.29)

where is it recalled that the notation �V is just to be consistent with notation used thus far. In
general these relations hold for any moving system translating at a velocity v. From the di↵erentials
of the potentials in Eq. (6.29) it can be deduced that

hij = �
1

�V

@E

@uij

◆

S,�V,N,P

= � 1

�V

@F

@uij

◆

T,�V,N,v

= � 1

�V

@⌦

@uij

◆

T,�V,µ,v

(6.30)

The counterparts of Eq. (6.30) relating hij to changes in free energy density will be derived below.
Note: to simplify notation, in the rest of this subsection the volume of the system being
considered will be denoted simply as “V ” rather than “�V ”. We will re-adopt the �V

notation again when some remaining derivations are out of the way.
Functions like E, F , ⌦, P and S are extensive, which means they increase linearly with system

volume or number of particles. It will prove convenient in what follows to work with the corresponding
densities of these functions, which assumes we can write E = V ", F = V f , ⌦ = V !, S = V s, P = V g,
etc. Extensive variables are also known as homogeneous functions of order 1 in the other extensive
variables, which implies they can be written as follows,

E(S, V,N, V uij ,P) = V "(S/V, 1, N/V, uij ,P/V ) = V "(s, ⇢, uij ,g)

F (T, V,N, V uij ,v) = V f(T, 1, N/V, uij ,v) = V f(T, ⇢, uij ,v)

⌦(T, V, µ, V uij ,v) = V !(T, V/V, µ, uij ,v) = V !(T, µ, uij ,v) (6.31)

where ", f , !, s, ⇢ and g are densities of corresponding quantities (quantity/volume). Using the
homogeneity properties in Eq. (6.31) allows us to re-express Eq. (6.30) in terms of the densities of the
potentials according to

hij = �
@"

@uij

◆

S,N,P

= � @f

@uij

◆

T,N,v

= � @!

@uij

◆

T,µ,v

, (6.32)

3
The reader is referred to Section 5.1.3 where the properties of hij were derived by constructing a mean field theory

of solids involving vacancies.
4
This form of the stress tensor can also be derived independently from static considerations of the work done to

deform a volume of solid volume [5].
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where it is recalled that for simplicity of notation, the volume �V in Eq. (6.30) was replaced by
V , as was discussed above. The homogeneity properties encapsulated in Eqs. (6.30) are useful for
determining the properties of the pressure p, from which the desired equation for entropy change,
needed to complete our hydrodynamics, is derived. This is examined next.

Comparing the last of Eq. (6.31) with the last line of Eq. (6.29) leads to

@⌦

@V

����
T,µij ,uij ,v

= ! = �p (6.33)

Combining the definition ⌦ = F � µN with Eq. (6.17) and using the last line of Eq. (6.31) and
Eq. (6.33) to write ⌦ = V ! = �pV gives

⌦ = �!V = �pV = E � TS �P · v � µN

=) �p = "� Ts� µ̄⇢� g · v, (6.34)

where µ̄⇢ = (µ/m)(mN/V ) thus making µ̄ the chemical potential per atom and ⇢ the usual density
(units=[mass/volume]). It is noted that this representation of pressure (p) makes it a function of
(T, µ̄,v, uij). It is instructive to compare the change in pressure dp from the second expression in
Eq. (6.34), i.e.,

�dp = d"� Tds� sdT � µ̄�⇢� ⇢dµ̄� g · �v � v · dg, (6.35)

to dp obtained form the last line of Eq. (6.29), which gives

d⌦ = d (�pV ) = �pdV � V dp = �SdT � pdV �Ndµ+ hijduijV �P · dv
=) �dp = �sdT � ⇢dµ̄� g · dv + hijduij (6.36)

Subtracting Eq. (6.36) from Eq. (6.35) finally gives

Tds = d"� µ̄d⇢� hijduij � v · dg (6.37)

Equation (6.37) relates the change in entropy to three sources, the work done to change the density
of particles, the work done to change the spacing of lattice planes in a solid, and the change of energy
of the moving system. In what follows, this equation will be applied locally to the volume �V and
combined with the locally averaged conservation laws to extract forms for the hydrodynamic fluxes,
which is the main goal of this chapter. 5

6.3 Entropy Production and Hydrodynamic Fluxes

It is typically assumed that Eq. (6.37) holds at any instant of time in moving system, which it will be
recalled, going back to the start of this chapter, represents a small volume moving within a deforming

5
It is noted that would could have taken an alternate route above by considering a slightly di↵erent free energy and

grand potential, defined by F̃ = F � hijuij and ⌦̃ = F̃ � µ⇢, which are Legendre transforms of the “traditional” F and

⌦, respectively. Proceeding through the same steps as above would have resulted in an expression for pressure given by

�p = "� Ts� µ̄⇢� g · v� hijuij , which is a Legendre transform of Eq. (6.34), which now makes pressure a function of

(T, µ̄,v, hij). This is the same expression for pressure used in Ref. [25]. It is noted that this representation of p leads to

the same entropy change expression as in Eq. (6.37), and does not change any of the results that follow in the calculations

below.
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continuum. As a result, Eq. (6.37) can be turned into a time rate of change of entropy of the volume
�V , i.e.,

T
@s

@t
=

@"

@t
� µ̄

@⇢

@t
� hij

@uij

@t
� v · @g

@t
(6.38)

= �r · J" + µ̄r · g � hijrivj + vjri⇡ji, (6.39)

where each time derivative on the right hand side of Eq. (6.38) has been associated with a gradient
of a flux of a coarse grained microscopic quantity from Eq. (6.2). In particular, the rate of average
energy density is the negative gradient of the flux of energy density, the second term similarly to
momentum flux, the third term to the gradient of the local velocity and the fourth to the gradient of
the momentum tensor. It is noted that ⇡ij = ⇡ji. For readers following [5], we use indicial notation
when tensor quantities with more than two indices need to be represented, the notation ri = @xi

and
repeated indices imply summation. Equation (6.37) can be turned into a vector

Tris = ri"� µ̄ri⇢� vjrigj � hklrirkul, (6.40)

where each component of Eq. (6.40) gives the gradient of change of entropy in the i
th direction 6. It

is noted that the form of the last term follows due to the symmetry of hij and uij . Taking the dot
product of Eq. (6.40) with the velocity v = (v1, v2, v3) of the system �V gives

T v ·rs = v ·r"� µ̄v ·r⇢� vivjrigj � vihklrirkul (6.41)

Adding Eq. (6.39) and Eq. (6.41) gives,

T
@s

@t
+ T v ·rs = (�r · J" + v ·r") + µ̄ (r · g � v ·r⇢)

= (vjri⇡ji � vivjrigj)

� (hijrivj + vihklrirkul) (6.42)

The above important, albeit messy, equation can be simplified by implementing the following
algebraic manipulations,

�r · J" + v ·r" = r · (�J" + "v)� "r · v
µ̄ (r · g � v ·r⇢) = �r · (µ̄ {⇢v � g}) + (⇢v � g) ·rµ̄+ µ̄⇢r · v

(vjri⇡ji � vivjrigj) = ri (vj⇡ji � vjvigj)� (⇡ji � vigj)rivj + vjgjr · v
vihklrirkul = ri (vihklrkul)�ri (vihkl)rkul, (6.43)

where ri operators act only on the quantity, operation or brackets to their immediate right. Substi-
tuting the simplifications in Eq. (6.43) into Eq. (6.42), writing v ·rs = r · (sv)�sr ·v, and collecting
terms gives,

T
@s

@t
+ T r · (sv) = (Ts� "+ µ̄⇢+ v · g)r · v + (⇢v � g) ·rµ̄

�ri (J" � "vi + µ̄ {⇢vi � gi}� vj⇡ji + vjvigj + vi hklrkul)

� (⇡ji � vigj + hij)rivj +ri (vi hkl)rkul (6.44)

6
It is noted that due to the symmetry of uij it is straightforward to show that contractions like hklrkul or hklrirkul

can be written as hklukl or hklriukl, respectively. This property will sometimes be used here for convenience.
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Using Eq. (6.34) to identify pressure in the first term on the right hand side of Eq. (6.44), and defining
dissipative heat flux Q" by

Q" = J" � "v + µ̄ (⇢v � g)� vj⇡ji + (v · g) vi + vihklrkul, (6.45)

reduces Eq. (6.44) to the form

T
@s

@t
+ T r · (sv) = �r ·Q"

� (⇡ji � p�ij + hij � vigj)rivj

+(⇢v � g) ·rµ̄
+ri (vi hkl)rkul, (6.46)

where we used pr · v = p�ijrivj to combine the first terms on the first and last lines of Eq. (6.44),
and where we reverted back to the notation rkul = ukl to represent the last term in in Eq. (6.44).

To proceed further, the identity

r ·Q" = Tr ·
✓
Q"

T

◆
+

✓
Q"

T

◆
·rT (6.47)

is substituted into Eq. (6.46). Thus chanegs the entropy production equation to

T
@s

@t
+ T r · (sv) + Tr ·

✓
Q"

T

◆
= �

✓
Q"

T

◆
·rT

� (⇡ji � p�ij + hij � vigj)rivj

+(⇢v � g) ·rµ̄
+ri (vi hkl)rkul (6.48)

Equation (6.48) is next integrated on both sides over a volume that is large enough that the fluxes sv
and Q" can be assumed to vanish on the volume’s surface. Furthermore, since we are only considering
linear elasticity of solids here, only terms quadratic in the displacements, strains, velocities or their
couplings is retained, which implies that the last term in Eq. (6.48) can be neglected as it is of
O(u3

i
, (�n/n)u2

i
) (since by Eq. (5.18) hij ⇠ Kijklukl +D (�n/no) �ij , where Kijkl and D are constants

and no is a reference density) 7. These considerations give

dStot

dt
=

Z
1

T

(
�
✓
Q"

T

◆
·rT �

n
⇡ji � p�ij + hij � vigj

o
rivj +

n
⇢v � g

o
·rµ̄

)
d
3x (6.49)

where Stot is the total integrated entropy in the volume. Equation (6.49) is an entropy production
equation that is driven by three terms on the right hand side, each of which is a scalar made from
a tensor product of two current densities. Non-negativity of entropy production will allow us to
determine constitutive relations for the hydrodynamic fluxes from the right hand side of Eq. (6.49).

The case of dissipationless deformation requires that dStot/dt = 0. In a general hydrodynamic state
of a deforming continuum, the local gradient terms rT , rivj and rµ̄ are not zero. As a result, the

7
It is also noted that if the alternate expression for pressure discussed in the footnote 5 was used, the last term in

Eq. (6.48) would have come out to be viri (hkl)rkul, but this is still of O(u
3
i , (�n/n)u

2
i ) and can be neglected for linear

elasticity.
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vanishing of the integral in Eq. (6.49) implies that: (1) the expressions multiplying the aforementioned
gradient terms vanish; (2) the dissipative heat flux Q" = 0 . This gives,

g = ⇢v (6.50)

⇡ji = p�ij � hij| {z }
��ij

+vigj (6.51)

J" = "v + vj⇡ji � (v · g) vi + vihklrkul, (6.52)

The momentum flux tensor is seen to naturally come out to be a sum of the stress tensor, as conjectured
in Eq. (6.28), plus a convective term, the latter of which is only kept for fluid flow (where also hij = 0).
It is instructive to make another simplification to Eq. (6.52), by substituting ⇡ji from Eq. (6.51). This
gives J" = ("+ p)v � vjhij [1�rkul], where 1�rkul ⇡ 1 for small strains. Writing gi = ⇢vi in the
third term on the right hand side of Eq. (6.51) gives the final form of the hydrodynamic fluxes,

g = ⇢v (6.53)

⇡ij = p�ij � hij + ⇢vivj (6.54)

J" = ("+ p)v � vjhij , (6.55)

Equation (6.53)-Eq. (6.55), along the constitutive relationship for pressure in Eq. (6.34), are the final
form of the hydrodynamic fluxes driving the local conservation of mass, momentum and internal energy
in deforming continuum (either solid or liquid in the general form written as above).

6.3.1 Specialization to liquids

Since liquids do not support sear, hij = 0, and the above equations reduce to

g = ⇢v (6.56)

⇡ij = p�ij + ⇢vivj = ��ij + ⇢vivj (6.57)

J" = ("+ p)v, (6.58)

and Eq. (6.34) for pressure, i.e. stress tensor for the liquid. Combining Eq. (6.56)-Eq. (6.58) with
conservation laws discussed above leads to the Navier-Stokes equations. It is noted that if dissipation
is considered in the liquid, dStot/dt > 0, and additional viscosity terms quadratic in the velocities
must be added to the fluxes to account for this. The reader is referred to Ref. [5] for details on this.

6.3.2 Specialization to solids

In deforming solids considered in most phase transformation processes, velocities as small and so
non-linear terms in velocities are also neglected. The corresponding fluxes thus become,

g = ⇢v (6.59)

⇡ij = p�ij � hij = ��ij (6.60)

J" = ("+ p)v � vjhij , (6.61)

where the constitutive relation for pressure given by Eq. (6.34), re-written here neglecting the non-
linear velocity terms,

�p = f � µ̄⇢

= "� Ts� µ̄⇢ (6.62)

It is recalled that Eq. (6.62) was used in Section (5.1.3) derive the pressure in a solid when considering
vacancies.
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6.4 Hydrodynamics of Solids: Displacement Modes

This section using the fluxes derived above combined with the conservations relations for mass and
momentum to derive equations that govern the hydrodynamics modes of u = (ux, uy, uz), the three
broken symmetry variables that characterize a solid. The equation will have the form of a wave
equation doubtless seen by many in physics numerous times in their undergraduate education, with
one twist however, the elastic coe�cients are endowed with corrections due to vacancy e↵ects relevant
to a solid, something very rarely seen in undergraduate studies.

We start with the expression for momentum density g and approximate the velocity of a volume
element in a deforming solid by v ⇡ @tu, which gives

g = ⇢(x, t)v = ⇢(x, t)
@u

@t
(6.63)

We combine Eq. (6.63) along with the momentum conservation equation,

@g

@t
= rj�ij , (6.64)

and the mass conservation equation,
@⇢(x, t)

@t
= �r · g, (6.65)

to arrive at
@g

@t
=

@

@t

✓
⇢(x, t)

@u

@t

◆
= rj�ij , (6.66)

which leads to

⇢(x, t)
@
2
ui

@t2
+
@ui

@t|{z}
vi

@⇢(x, t)

@t| {z }
�r·g

= rj�ij (6.67)

Substituting v = @tui and @t⇢ = �r · g gives

⇢(x, t)
@
2
ui

@t2
� (r · g) vi = rj�ij (6.68)

We can neglect the second order velocity terms in the study of linearized hydrodynamics, hence
dropping the non-linear velocity term in Eq. (6.68) is dropped. This yields

⇢(x, t)
@
2
ui

@t2
= rj�ij , (6.69)

which is a wave equation for dissipation-less dynamics for each of the displacement modes of a solid.
An explicit form for the right hand side of Eq. (6.69) can be obtained by using Eq. (5.24) for the

relative change of stress from a reference state, which was discussed in relation to solids in Section 5.1.
Since we saw that rj�ij = rj��ij , we can write,

⇢(x, t)
@
2
ui

@t2
=

@

@xj

⇢
(D �A)

⇢
�⇢

⇢0
+ uii

�
�ij +K

v

ijkl
ukl

�
(6.70)

where we have adapted the notation of Section 5.1 to the notation of this chapter. For small defor-
mations near the reference equilibrium state, we can approximate �⇢/⇢0 ⇡ �uii, which allows us to
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neglect the first term in the large brackets on the right hand side of Eq. (6.70). This finally gives the
more familiar formula from continuum mechanics,

⇢(x, t)
@
2
ui

@t2
=

@

@xj

�
K

v

ijkl
ukl

�
(6.71)

where it is recalled that repeated indices are summed over. Equation (6.71) is the standard wave equa-
tion developed with the hydrodynamics ideas of this Chapter, and which propagates the three modes
of displacement in a solid. It is stressed, however, that it contains crucial corrections to the standard
Hookian elastic constants that are born out of our of considerations of vacancy thermodynamics in
solids, done in Section 5.1.
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Chapter 7

Classical Density Functional Theory

The above treatment of thermodynamic potentials and their application to determining equilibrium
properties of a system assumes that its phases are translationally invariant, i.e. phases are uniform.
Even for the case of phase coexistence, no spatial distinction between phases is made, thus neglecting
any non-uniformity within and between phases (e.g. fluctuations and interfaces). To derive a theory
describing spatial variation in materials, we need to introduce spatial structure into the ensemble
averaging process of the grand partition function and other thermodynamic potentials. Minimization
of the grand potential functional containing spatial variations will lead to an Euler-Lagrange equation,
di↵erential equation, whose solution allows for the calculation of the density profile and energy of
coexisting phases at equilibrium. For more details on the processes followed in this section, the reader
is referred to Ref. [13].

7.1 Statistical Mechanics Preliminaries

We begin this discussion this notion of a classical density operator given by

⇢̂(x;q) =
NX

i=0

�
(3) (x� qi) (7.1)

where x is the spatial (vector) position where a density measurement is made, while the qi is the
vector position of any of the i = 1 · · ·N particles in the system and q represents the 3N dimensional
vector of all particle positions. The average of the system density at a position x is given by averaging
⇢̂(x;q) over the phase space of all N particle positions qi and all N particle momenta pi according to

⇢(x) = h⇢̂(x;q)i =
1X

N=0

1

h3N N !

Z
⇢̂(x;q)f(q,p;N) d�, (7.2)

where h is Plank’s constant and d� ⌘ dq1, · · · , dqN , dp1, · · · , dpN ⌘ dqN
dpN , where p denotes the

3N dimensional vector of momenta of all the particles. The function f(q,p, N) denotes the N -partcile
equilibrium phase space probability density, given explicitly for an open system by

f(q,p;N) =
e
��(H�µN)

⌅(µ,�)
, (7.3)
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where �=1/kBT , H ⌘ H(q,p) is the Hamiltonian, µ the chemical potential of the system and ⌅(µ,�)
is the grand canonical partition function of the system, given by

⌅ =
1X

N=0

1

h3NN !

ZZ
exp(�� (H� µN)) dqNdpN

1X

N=0

exp(N�µ)

h3NN !

ZZ
exp(��H) dqNdpN =

1X

N=0

z
N

N !
ZN , (7.4)

where z denotes the activity (or Fugacity)

z =
exp(�µ)

⇤3
, (7.5)

and ⇤ is the de Broglie thermal wavelength

⇤ =

✓
2⇡�h̄2

m

◆1/2

, (7.6)

while ZN is the configurational integral

ZN =

Z
exp (��VN ) dqN (7.7)

It is noted that the normalization of Eq. (7.3) and Eq. (7.4) follows

1X

N=0

1

h3NN !

ZZ
f(q,p;N)dqNdpN = 1, (7.8)

where the N ! assures we don’t over-count states that involve a permutation of the indistinguishable
particle labels, and h

3N is for consistency with quantum statistical mechanics and to make the partition
function dimentionally correct. It will be seen as we progress that working in the grand canonical
ensemble as we do above is practical for distilling equilibrium properties in non-uniform systems. The
density ⇢(x) = h⇢̂(x;q)i in Eq. (7.2) is also denoted as ⇢(1)(x), and referred to as the 1-particle density
[13]. We will hereafter drop the superscript in what follows for convenience.

Equation (7.3) allows all thermodynamic properties of a system to be calculated, whether they have
a spacial variation in them (as with ⇢(x)) or not. Averages of a quantity follow the form of Eq. (7.2)
where ⇢̂(x;q) is replaced by whatever other operator (i.e. microscopic quantity, e.g B(x, N ;q,p)) we
wish to quantify. For example, average particle number is found by replacing B ! N , average energy
is found by replacing B ! H, etc. Another important thermodynamic quantity is the entropy S,
given by

S = �kB
1X

N=0

1

h3N N !

Z
f(q,p;N) ln [f(q,p;N)] d�, (7.9)

where SB=�kB ln(f(q,p;N)) is the Boltzman entropy corresponding to the phase space volume d�,
averaged over all phase space and weighted by the phase space density f(q,p;N), giving the Gibbs
entropy.

An important result that we will need in what follows is the connection of the grand partition
function with the thermodynamic grand potential ⌦. That link is defined through the definition

⌦ = �kBT ln⌅ (7.10)

Each ensemble of statistical mechanics has a link with a corresponding thermodynamic potential
through the logarithm of the corresponding partition function of the ensemble.
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7.2 Adding Spatial Variations in the Grand Partition Function

To incorporate spatial variations due to an external, or perturbative, influence into the system, we
introduce an external field, �N (x), in the Hamiltonian as follows,

H (q,p) = KN (p) + VN (q) + �N (q) (7.11)

where

�N (q) ⌘
NX

i=1

�(qi) =

Z
⇢̂(x,q)�(x)dx (7.12)

The function �(qi) is an external potential which with the ith particle interacts. This external potential
be interpreted as a local energy of interactions between the atoms in the system and a container wall,
or the interaction of particles in the system with an external perturbation into the system. The
ensemble (thermodynamic) average of the interaction energy becomes

h�N i =
Z
h⇢̂(x,q)i�(x)dx =

Z
⇢(x)�(x)dx (7.13)

The product ⇢(x)�(x) is the interaction energy density at the location x in the system. It is noted
that h�N i is a functional as it depends on how �(x) varies at all x.

We can incorporate the microscopic interaction �N (q) into the grand canonical partition function
by e↵ectively adding another term to the hamiltonian H. This leads to

⌅ =
1X

N=0

1

h3NN !

ZZ
exp

⇢
��

✓
H� µN +

Z
�(x)⇢̂(x;q) dx

◆�
dqNdpN (7.14)

The Lagrange multipliers µ and �(x) can be associated with constraints of average number of particles
and local particle density respectively. To simplify things further, it is noted that for any given particle
number N , the density operator in Eq. (7.1) must satisfy,

Z
⇢̂(x;q) dx = N (7.15)

Substituting Eq. (7.15) into Eq. (7.14) thus leads to

⌅[ (x)] =
1X

N=0

1

h3NN !

ZZ
exp

⇢
��

✓
H+

Z
 (x)⇢̂(x;q) dx

◆�
dqNdpN

, (7.16)

where the field  (x) = µ � �(x) is defined as the intrinsic chemical potential ; this is the part of the
system’s chemical potential µ not included in �(x). The grand partition function is explicitly written
here as ⌅[ (x)] to denote that it is functional of the intrinsic chemical potential  (x).

Analogously to the process above, the phase space probability distribution can now be generalized
in terms of  (x) as

f(q,p;N) =
1

⌅
exp

⇢
��

✓
H�

Z
 (x)⇢̂(x,q) dx

◆�
, (7.17)

which also makes f(q,p;N) a functional of  (x), although we omit writing that dependency explicitly
to keep notation tractable.

Finally, based on the definition of ⌅[ (x)], the grand potential functional is now obtained,

⌦[ (x)] = �kBT ln⌅[ (x)] (7.18)

It is noteworthy that, analogously to its uniform system counterpart @⌅/@µ = �N , the functional
derivative �⌦[⇢(x)]/� (x) = �⇢(x), a result also obtained by ensemble averaging ⇢̂(x,q) uisng
Eq. (7.17).
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7.3 The Intrinsic Free Energy Functional

The significance of the external field introduced in Section 7.2 can better be appreciated by examining
the way it enters the phenomenology of the first law of thermodynamics by generalizing the work done
on the system by a change of volume (typically written as dW = PdV ) by the corresponding energy
caused by a change in ��(x). Namely, the change in work on the system could be seen as mediated by a
change in energy of the atoms near the container walls interacting with changing potential of the wall.
This would lead to an energy change in the system of �Uint =

R
⇢(x)��(x)dx, where the integrand

decays to zero away from the walls where �(x) is zero. As a result, the first law of thermodynamics
can be generalized as

�U = T �S +

Z
⇢(x)��(x)dx+ µ�N (7.19)

Equation (7.19) uses ”�” to signify change since U is a functional of �(x), making it natural to
assume that S, T and N will in general also be functionals. Consider next the Helmoltz free energy 1

F = U � TS. Its variation becomes �F = �U � T �S � S�T . Combining this with Eq. (7.19) gives

�F = S�T +

Z
⇢(x)��(x)dx+ µ�N, (7.20)

making F a functional of �(x) as well. It is seen that �(x) takes the role of volume V from the uniform
system counterpart of the first law [13].

Equation (7.20) suggests that we define a new thermodynamic potential, the intrinsic free energy
(F), according to

F = F �
Z
⇢(x)�(x)dx (7.21)

The functional dependence of F is found by taking the variation of Eq. (7.21), and using Eq. (7.20)
to yield

�F = �S�T �
Z
�⇢(x)�(x)dx+ µ�N

= �S�T +

Z
�⇢(x) (x)dx (7.22)

Equation (7.22) shows that F is a functional of ⇢(x) (analogously to F , which is also a function of
N).

Proceeding further, we use ⌦ = F � µN in Eq. (7.21) to express the grand potential functional in
terms of F ,

⌦ = F +

Z
⇢(x)�(x)� µN

= F �
Z
⇢(x) (x)dx (7.23)

Combining the variation of the second line of Eq. (7.23) with the second line of Eq. (7.22) gives

�⌦ = �S�T �
Z
⇢(x)� (x)dx, (7.24)

1
In this section we reverse the labels for the Helmholtz and Gibbs energies from Chapter 1, denoting the former with

an F and the latter with a G. This is done to keep the notation consistent with numerous texts in classical density

functional theory.
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which shows that ⌦ is a functional of the intrinsic chemical potential  (x), as expected from the
arguments of the previous section.

It is noted in passing that the second line of Equation (7.23) can be derived more rigorously by
taking the logarithm of the e probability distribution in Eq. (7.17), which gives

kBT ln [f(q,p, N)] = �H+

Z
⇢̂(x;q) (x)dx� kBT ln⌅ (7.25)

Next, take the ensemble average (as in Eq. (7.2)), and use Eq. (7.18) to obtain

hH+ kBT ln [f(q,p, N)]i =
Z
h⇢̂(x;q)i (x)dx+ ⌦

=

Z
⇢(x) (x)dx+ ⌦ = F (7.26)

Eq. (7.26) shows that ⌦ and F are related through a functional Legendre transformation.
That F as a functional of ⇢(x) can also be arrived at more formally by considering phase space

density distribution f(q,p;N). Namely, there is a proof that tells us that for a given T , µ and VN

(inter-particle potential) there is only one external potential �(x) that will correspond to a specific
1-point density field ⇢(x) [13]. This makes f(q,p;N), which we saw is a functional of �(x), also a
unique functional of the density ⇢(x). Taking the ensemble average on the left hand side of Eq. (7.26)
then simplifies that F is a unique functional of ⇢(x).

7.4 Equilibrium Density and Thermodynamic Driving Forces

We pause here to collect a couple of important results from the previous section related to the micro-
scopic equilibrium 1-point density field in a non-uniform system. These form key results of density
functional theory. They will also be very useful later to analyze the equilibrium properties of phase
filed crystal (PFC) models, as well as the non-equilibrium dynamics of their density fields.

Starting with the intrinsic free energy parameterized by its natural variable, F [⇢(x)], Equa-
tion (7.22) gives

�F
�⇢(x)

=  (x) = µ� �(x), (7.27)

at constant temperature. Thus, if F [⇢(x)] can be parameterized in terms of ⇢(x), Eq. (7.27) defines
an equation for the [non-uniform] equilibrium particle density field of a system as a function of the
external potential �(x).

Approaching things from the perspective of the grand potential ⌦[ (x)], Eq. (7.24) gives

�⌦

� (x)
= �⇢(x), (7.28)

at constant temperature. Equation (7.28) is interesting as it tells us that if we can parameterize
⌦[ (x)], it is possible to obtain the single particle density by functional di↵erentiation; this also implies
that the intrinsic chemical potential can be expressed in terms of ⇢(x) (more on this later). Note that
Eq. (7.28) could be equivalently derived from the Legendre transformation implied in Eq. (7.23), and
assuming there exists a relationship ⇢[ (x)] and using Eq. (7.27).

It is instructive to evaluate ⌦ in Eq. (7.23) with some density ⇢̃(x) that is di↵erent from the
equilibrium 1-particle density ⇢(x), i.e.,

⌦[⇢̃] = F [⇢̃] +

Z
⇢̃(x)�(x)� µ

Z
⇢̃(x) (7.29)
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It can be shown [13] that ⌦[⇢̃(x)] > ⌦[⇢(x)] for all ⇢̃(x). Equilibrium is defined by ⇢̃(x) ! ⇢(x),
whereupon ⌦[⇢̃(x)]! ⌦[⇢(x)], and where

�⌦

�⇢̃(x)

����
⇢̃(x)=⇢(x)

=
�F
�⇢̃(x)

����
⇢̃(x)=⇢(x)

+ �(x)� µ = 0, (7.30)

Many models in the non-equilibrium thermodynamics literature employ the expression

D =
�⌦

�⇢̃(x)
(7.31)

to play the role of a thermodynamic driving force to determine the flux of density in dynamical models
of non-equilibrium phase transformations. Such models typically drive the system density from some
initial configuration toward its equilibrium state. There are of course limitations of how accurate this
is, including that the system should be close to equilibrium initially. More on this later.

7.5 Correlation Functions

While elegant and mathematically appealing, formal expressions of the grand partition and grand
potential can rarely be solved exactly for any practical system. Instead, many density functional
theory (DFT) based models of non-equilibrium systems make progress by expanding the free energy,
or grand potential, in a functional Taylor series about a reference state. Each term of this expansion
is related to a so-called n-point direct correlation function. Direct correlation functions can be related
to multi-point density correlation functions generated by the grand potential, and some of them are
measurable experimentally. Given the importance of correlation functions in the development of
continuum field theories, this Section will study the topic of generating correlation functions in some
detail.

7.5.1 Generting the n-point density from the grand partition function

To explore the formalism of generating multi-point density correlation functions from the grand po-
tential, we first must understand how to take functional derivatives of the grand partition function.
We begin by re-writing Eq. (7.16) with the interaction term in the integral

R
 (x)⇢̂(x,q)dx expressed

in terms of the sum in Eq. (7.12). This allows us to express ⌅[ ] as

⌅[z⇤] =
1X

N=0

1

N !

Z
exp (��VN )

 
NY

i=1

z
⇤(qi)

!
dqN

, (7.32)

where the shorthand notation

z
⇤(qi) =

exp[� (qi)]

⇤3
= z exp [��� (qi)] (7.33)

has been defined following Ref. [13]. It is recalled that here VN is the particle interaction potential and
z is given by Eq. (7.5). Another important quantity we’ll need in addition to ⌅[z⇤] is the n-particle
density of a system. This gives the probably density of finding any n particles within a volume
element dqn of phase space, irrespective of all other particle positions and all particle momenta. This
is obtained by integrating the distribution in Eq. (7.17) over (N�n) position coordinates of the 3N -
vector q (e.g. over {qn+1, · · · ,qN}), integrating over all particle momenta in the 3N -vector p, and
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summing over particle numbers N � n. The resulting function is the n-particle density, whose explicit
form is given by

⇢
(n)(q1, · · · ,qn) =

1

⌅

1X

N=n

1

(N � n)!

Z
exp (��VN )

 
NY

i=1

z
⇤(qi)

!
dq(N�n)

, (7.34)

where the notation dq(N�n) implies integration over (N�n) out of N particle labels. The normalization
1/(N�n)! arises after multiplying each term in the sum by N !/ (N � n)!, the number of ways we can
choose n out of N particle labels. It is emphasized that ⇢(n)(q1, · · · ,qn) represents the probability of
finding any n particles at the respective positions q1, · · · ,qn irrespective of their labels. Equation 7.34
will next be used to link n-particle densities to functional derivatives of the grand partition function
⌅[z⇤] in Eq. (7.32).

Taking the first functional derivative of ⌅ with respect to z
⇤(q1) (or any index i, which is just a

label on any of N identical particles in any term of the sum) gives

�⌅

�z⇤(q1)
=

1X

N=1

1

(N � 1)!

Z
exp (��VN )

 
NY

i=2

z
⇤(qi)

!
dq2 · · · dqN (7.35)

A few points are in order to help the reader arrive at Eq. (7.35). First, the product is absent from
Eq. (7.32) when N = 0, and the exponential gives a constant. This makes the N = 0 term in
Eq. (7.32) vanish upon di↵erentiation, hence starting the sum in Eq. (7.35) from N = 1. Also, the
factor (N � 1)! appearing in Eq. (7.35) comes from the fact that the variation of �⌅ generates (for
each term in its sum) N terms, each varying with respect to one �z⇤(qi) from the set i 2 {1, · · · , N}.
Since the integrand of Eq. (7.32) is symmetric with respect to the interchange of any two labels in
i 2 {1, · · · , N}, the variation �⌅ is thus N times the variation of ⌅ with respect to any one of the
labels. Multiplying Eq. (7.35) by z

⇤(q1)/⌅ and comparing with Eq. (7.34), recovers the 1-particle (the
”usual”) equilibrium density field), namely,

z
⇤(q1)

⌅

�⌅

�z⇤(q1)
=

1

⌅

1X

N=1

1

(N � 1)!

Z
exp (��VN )

 
NY

i=1

z
⇤(qi)

!
dq2 · · · dqN

= ⇢
(1)(q1) (7.36)

It is emphasized that ⇢(1)(q1) represents the probability of finding any particle at position q1, irre-
spective of its label; the 1-particle density is given equivalently by Eq. (7.2).

We continue with the second functional derivative of ⌅, i.e., the functional derivative of �⌅/�z⇤(q1)
with respect to the function �z⇤(q2). Applying similar considerations to those leading to Eq. (7.35)
gives

�⌅

�z⇤(q1)�z⇤(q2)
=

1X

N=2

1

(N � 2)!

Z
exp (��VN )

 
NY

i=3

z
⇤(qi)

!
dq3 · · · dqN , (7.37)

where again the N = 1 term in Eq. (7.35) vanishes and hence the sum in Eq. (7.37) starts are
N = 2. Similarly, the product in the integrand of Eq. (7.35) has had the z

⇤(q2) factor knocked out
by the functional di↵erentiation. Also there is now a factor (N � 2)! in the denominator due to the
N � 1 identical terms the functional di↵erentiation of Eq. (7.35) generates due the symmetry of its
integrand. Multiplying Eq. (7.37) by z

⇤(q1) z⇤(q2)/⌅ and comparing with Eq. (7.34) recovers the
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2-particle density, namely,

z
⇤(q1)z⇤(q2)

⌅

�⌅

�z⇤(q1)�z⇤(q2)
=

1

⌅

1X

N=2

1

(N � 2)!

Z
exp (��VN )

 
NY

i=1

z
⇤(qi)

!
dq3 · · · dqN

= ⇢
(2)(q1,q2) (7.38)

It is emphasized here that ⇢(2)(q1,q2) represents the probability of finding any two particles at posi-
tions q1, and q2, respectively, irrespective of their labels.

It should now be straightforward to generalize the functional di↵erentiation of ⌅ by continually
applying variationals successively to Eq. (7.37), first by z

⇤(q3), then by z
⇤(q3), and so on up to z

⇤(qn).
This gives

�⌅

�z⇤(q1)�z⇤(q2)· · ·z⇤(qn)
=

1X

N=n

1

(N�n)!

Z
exp (��VN )

 
NY

i=n+1

z
⇤(qi)

!
dqn+1· · ·dqN (7.39)

Furthermore, multiplying Eq. (7.39) by z⇤(q1) z⇤(q2) · · · z⇤(qn)/⌅ gives the n-point density in Eq. (7.34),
namely,

z
⇤(q1) · · · z⇤(qn)

⌅

�⌅

�z⇤(q1) · · · �z⇤(qn)
=

1

⌅

1X

N=n

1

(N�n)!

Z
exp (��VN )

 
NY

i=1

z
⇤(qi)

!
dqn+1· · ·dqN

= ⇢
(n)(q1, · · · ,qn) (7.40)

where now ⇢
(n)(q1, · · · ,qn) represents the probability of finding any n particles at the respective

positions q1,q2, · · · ,qn, irrespective of their labels. Equation (7.40) provides the key result we’ll need
in order to link the grand potential functional to the density correlations, which we started out to do
at the outset of this section.

7.5.2 Generating density correlation functions from the grand potential

To proceed further, we next consider variationals of the grand potential functional with respect to the
intrinsic chemical potential. We start by the realtin ⌦ = �kBT ln⌅ and take the first variational,

�⌦

� (q1)
= ��z⇤(q1)

�⌦

�z⇤(q1)

= �z
⇤(q1)

⌅

�⌅

�z⇤(q1)

= �⇢(1)(q1) (7.41)

where we have used the variational version of the chain rule to relate  (q1) to z
⇤(q1) in the first line

of Eq. (7.41) and Eq. (7.36) to arrive at the last line.
We next take the second variation of ⌦ with regards to the intrinsic chemical potential at two

particle positions,  (q1) and  (q2), or, the variational of Eq. (7.41) with respect to  (q2). We begin
by applying the functional product rule twice and collecting terms to obtain

�⌦

� (q2)� (q1)
= �z

⇤(q2)
�

�z⇤(q2)

✓
z
⇤(q1)

⌅

�⌦

�z⇤(q1)

◆

= �

⇢✓
z
⇤(q1)

⌅

�⌦

�z⇤(q1)

◆✓
z
⇤(q2)

⌅

�⌦

�z⇤(q2)

◆
� z

⇤(q2)

⌅

�⌅

�z⇤(q1)
� (q1 � q2)

+
z
⇤(q1)z⇤(q2)

⌅

�
2⌅

�z⇤(q1)�z⇤(q2)

�
, (7.42)

94



The middle term in the second line of Eq. (7.42) was obtained by using the relationship �z⇤(q1)/�z⇤(q2) =
�(q1� q2) [5, 13]. Inspection of Eq. (7.42) shows that the first term in the large curley brackets com-
prises the product of two 1-point densities evaluated at two positions, respectively, while the second
term can be re-written as a 1-point density multiplying a delta function. Comparing its last term with
Eq. (7.40) gives a 2-point density, thus reducing Eq. (7.42) to

�⌦

� (q2)� (q1)
= �

n
⇢
(1)(q1)⇢

(1)(q2)� ⇢(1)(q1)�(q1 � q2)� ⇢(2)(q1,q2)
o

(7.43)

The right hand side of Eq. (7.43) can be made more illuminating by connecting it to the density-
density correlation function, defined by

C(2)
�
x,x0

�
=
⌦
[⇢̂(x)� h⇢̂(x)i]

⇥
⇢̂
�
x0
�
�
⌦
⇢̂
�
x0
�↵⇤↵

, (7.44)

where ⇢̂(x) is the density operator in Eq. (7.1) (with the ”;q” omitted for brevity). The function
C(2)(x,x0) measures the average fluctuation of the density (relative to its average) between x and x0.
Expanding the right hand side of Eq. (7.44) and substituting Eq. (7.1) gives

⌦
[⇢̂(x)� h⇢̂(x)i]

⇥
⇢̂
�
x0
�
�
⌦
⇢̂
�
x0
↵�⇤↵

=

*
NX

i=0

NX

j=0
j 6=i

�
(3) (x� qi) �

(3)
�
x0 � qj

�
+

+

*
NX

i=0

�
(3) (x� qi) �

(3)
�
x0 � qi

�
+

� ⇢
(1)(x)⇢(1)(x0), (7.45)

where it is recalled that h⇢̂(x)i = ⇢
(1)(x) and the ”h i” denote ensemble averging over the qi coordi-

nates so ⇢(1)(x) and ⇢(1)(x0) come out of averages. The first term on the right hand side of Eq. (7.45)
is just ⇢(2)(x,x0). This is seen by first taking the average

⌦
�
(3) (x� qi) �(3) (x0 � qj)

↵
using the density

in Eq. (7.17) as a weighting function 2 and noting that i and j are dummy indices. This implies that
each term in the sum over particles is multiplied by N(N � 1), which leads direclty to Eq. (7.38).
Similalry taking the average

⌦
�
(3) (x� qi) �(3) (x0 � qi)

↵
simplifies the last term to �(3) (x� x0) ⇢(1)(x).

These simplifications of Eq. (7.45) allow us to re-express Equation (7.43) as

�⌦

� (q2)� (q1)
= �� C(2)(q1,q2) (7.46)

It is noted that in Eq. (7.46), the variables x and x0 were replaced by q1 and q2, respectively to return
to the previous used notation.

The above procedure can be generalized to higher order functional derivatives of the grand potential
⌦[ (x)]. The algebra for this is straightforward but tedious and will not be shown here. What results
is the relation

�
n⌦

� (q1) · · · � (qn)
= ��n C(n)(q1, · · · ,qn), (7.47)

where the n-point density correlation function is given by

C(n)(q1, · · · ,qn) = h[⇢̂(q1)� h⇢̂(q1)i] · · · [⇢̂ (qn)� h⇢̂ (qn)i]i (7.48)

2
To proceed here, express the integral

R
 (x)⇢̂(x,q)dx in terms of the sum in Eq. (7.12) as was done in obtaining

Eq. (7.32).
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The function C(n)(q1, · · · ,qn) measures statistical correlations in fluctuations of the relative density
between n points simultaneously.

Equations (7.40) and 7.47 are the main results of this section. The interpretion of Eq. (7.40) is
that the grand partition function is a generator of moments of the density field ⇢(x), while that of
Eq. (7.47) is that the grand potential functional is a generator of density correlation functions.

7.5.3 Generating direct correlation functions from the excess free energy

Classical field theory models of phase transformations used to study microstructure evolution do not
typically use density correlation functions defined above, but rather, the so-called direct correlation
functions, which are derived from the excess free energy of a system. This aim of this section is to
relate the direct correlations functions to the excess free energy by considering system expanded as
an ideal gas plus an excess contribution that contains all interactions. The ideal gas will thus be
e↵ectively a non-interacting reference state around which the free energy of any system can, in theory,
be written as a perturbation series of direct correlations functions. This will be used in the next
section to derive a density functional theory or freezing, which has motivated many of the phase field
crystal (PFC) models encountered in the literature.

7.5.3.1 Non-Interacting ideal gas

The grand potential of an ideal gas of non-interacting particles is given by ⌦ = �kBT ln⌅, where ⌅
is evaluated from Eq. (7.32) by setting the inter-atomic potential to zero, VN = 0. This gives

⌦id[ ] = �kBT ln

(
1X

N=0

Z̃
⇤[ (q)]

N !

)
, (7.49)

where

Z̃
⇤[ (q)] =

Z

V

e
� (q)

⇤3
dq (7.50)

We’ll see below that the the density of a gas scales with Z̃
⇤, and thus Eq. (7.49) can be approximated

to O((Z̃⇤)3) by keeping the first two terms in the sum. This gives,

⌦id[ ] ⇡ �
kbT

⇤3

Z
dq e

� (q) (7.51)

Applying Eq. (7.41) to Eq. (7.51) gives the density field of the gas,

⇢
(1)
id

(q) =
e
� (q)

⇤3
, (7.52)

which can be inverted for the intrinsic chemical potential,

 id[⇢
(1)
id

(q)] = kBT ln
⇣

⇤3
⇢
(1)
id

(q)
⌘

(7.53)

It will be instructive for what follows to to also calculate the intrinsic free energy Fid of the non-
interacting gas. This is straightforward to do from the grand potentuial, since Fid and ⌦id are related
by a Legendre transform (see Eq. (7.23)), and hence satisfy

F [⇢(1)(q)] = ⌦[ (q)] +

Z
⇢
(1)(q) [⇢(1)(q)] (7.54)

96



Substituting ⌦id and  id into Eq. (7.54) gives

Fid[⇢
(1)
id

(q)] = kbT

Z
dq

n
⇢
(1)
id

(q) ln
⇣

⇤3
⇢
(1)
id

(q)
⌘
� ⇢(1)

id
(q)

o
, (7.55)

Note that the above results show, not too surprisingly, that the non-uniform properties of an ideal gas
can be described completely by evaluating the properties of a uniform ideal gas at the local density

⇢
(1)
id

(q).

7.5.3.2 Interacting systems

With the properties of the ideal non-interacting gas in hand, we can proceed to express the grand
potential and intrinsic free energy of the interacting gas in terms of their reference non-interacting gas
states. We express the deviation of a system from an ideal non-interacting system by factoring the
ideal contribution out of the partition function, i.e.,

⌅[ (q)] = ⌅id[ (q)]⌅ex[ (q)], (7.56)

Taking logs of both sides of Eq. (7.56) gives

⌦[ (q)] = ⌦id[ (q)] + ⌦ex[ (q)] (7.57)

Substituting Eq. (7.57) into the right hand side of Eq. (7.54) allows us to write

F [⇢(1)(q)] = ⌦id[ ] +

Z

V

⇢
(1)(q) id[⇢

(1)(q)]

+ ⌦ex[ ] +

Z

V

⇢
(1)(q) ex[⇢

(1)(q)] dq (7.58)

where  ex[⇢(1)(q)] is defined by

 ex[⇢
(1)(q)] =  [⇢(1)(q)]�  id[⇢

(1)(q)], (7.59)

The expression  ex[⇢(1)(q)] represents the di↵erence in the intrinsic chemical potential corresponding
to relative to the corresponding ideal intrinsic chemical potential evaluated at ⇢(1)(q). It is clear from
Eq. (7.59) that we can express the change in intrinsic free energy analogously to Eq. (7.57), according
to

F [⇢(1)(q)] = Fid[⇢
(1)(q)] + Fex[⇢

(1)(q)] (7.60)

Why did we bother to write the grand potential and intrinsic free energy in the ways shown above?
The reason is that the inter-atomic potential V (q) typically makes any direct approach to calculating
the excess free energy intractable. Though perturbative method such as the so-called cluster expansion
technique [22], it is possible to treat the interaction potential in a perturbative fashion. There are many
statistical mechanics books out thaere that study that and other perturbative approaches. However,
here, we are after more practical approaches to model interacting systems by expanding the excess
free energy in Eq. (7.60) and relating it to so-called direct correlation functions. These are then
fit phenomenologically to yield continuum models from which e�cient equations of motions can be
derived to study dynamical microstructure evolution over extended physical domains on di↵usional
time scales.
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7.5.3.3 Definition of Direct correlation functions

We begin with the definition of the single particle direct correlation function is defined as

kBT C
(1)(q) = ��Fex[⇢(1)(q)]

�⇢(1)(q)
(7.61)

To see the significance of C(1) we can take the variational of Eq. (7.60) to yield the intrinsic chemical
potential,

�F [⇢(1)(q)]

�⇢(1)(q)
=
�Fid[⇢(1)(q)]

�⇢(1)(q)
� kBT C

(1)(q) =  (q) (7.62)

Recognizing the second term in Eq. (7.62) as the form of the intrinsic chemical potential of the ideal
gas and replacing it with Eq. (7.53) gives

 (q) = kBT

n
ln[⇤⇢(1)(q)]� C

(1)(q)
o

(7.63)

Considering Eq. (7.63) shows that C(1)(q) describes the role of particle interactions on the density of
the system or, alternatively, the excess part of the intrinsic chemical potential.

We can generate a hierarchy of direct correlation functions through repeated functional di↵erentia-
tion of C(1)(q), or alternatively the the excess free energy. Specifically, the two-point direct correlation
function is defined as

kBT C
(2)(q,q0) = kBT

�C
(1)(q)

�⇢(1)(q0)
= � �

2Fex[⇢(1)(q)]

�⇢(1)(q) �⇢(1)(q0)
(7.64)

As with the density correlation functions, the n-th order correlation can be defined and related to the
corresponding functional derivative of the excess intrinsic free energy according to

kBTC
n(q1, . . . ,qn) = �

�
nFex[⇢(1)(q)]

�⇢(q1)...�⇢(qn)
(7.65)

7.5.3.4 Orstein-Zernike relation for C
(2)(q1,q2)

The above procedure is formal and relates the direct correlation functions to the excess free energy,
which we argued above is rarely tractable. Let’s do some mathematical gymnastics to obtain a more
useful expression for C

(2(q1,q2) in terms of the density correlation functions and the multi-point
density functions discussed in previous subsections.

We proceed by considering the combination of Eq. (7.46) and Eq. (7.41), which gives,

C(2)(q1,q2) = kBT
�⇢

(1)(q1)

� (q2)
(7.66)

Next, from the rules of functional di↵erentiation it follows that �⇢(1)(q)/�⇢(1)(q0) = �(q� q0). More-
over, since ⇢(1)(q) is a functional of  (q) we can use the chain rule analogue for functional di↵erenti-
ation to write

�⇢
(1)(q1)

�⇢(1)(q2)
=

Z
�⇢

(1)(q1)

� (q00)

� (q
00
)

�⇢(1)(q1)
dq

00
= �

�
q� q0

�
, (7.67)

Equation (7.67) implies that the functional inverse of C(2)(q1,q2) (think of it as a matrix with contin-
uous indices) is h

C(2)(q1,q2)
i
�1

=
1

kBT

� (q1)

�⇢(1)(q2)
(7.68)
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Substituting Eq. (7.63) into Eq. (7.68) gives
h
C(2)(q1,q2)

i
�1

= �
� (q1)

�⇢(1)(q2)
=
�(q1 � q2)

⇢(1)(q1)
� C

(2)(q1,q2) (7.69)

it is noted in passing that the function C(2)(q1,q2) in Eq. (7.69) can be identified as the so-called
Ursell function, which is defined like the two-point density-density correlation function except that it
uses the density shifted relative to its mean value (compare Eq. (7.48) to equation 2.3.5 in the text
book by Chakin and Lubensky [4]).

It is more usual to relate the direct two-point correlation function to the so-called pair correlation
function. To do so, we substitute the rightmost equality in Eq. (7.69) and Eq. (7.66) into the rightmost
equality of Eq. (7.67), which gives, after some algebra, the Orstein-Zernike relation,

h
(2)(q1,q2) = C

(2)(q1,q2) +

Z
C

(2)(q1,q
00
)⇢(1)(q

00
)h(2)(q

00
,q2)dq

00
, (7.70)

where h
(2)(q1,q2) denotes the pair correlation function, which is defined by

h
(2)(q1,q2) = g

(2)(q1,q2)� 1, (7.71)

and g
(2)(q1,q2) is defined as the pair distribution function, given by

g
(2)(q1,q2) =

⇢
(2)(q1,q2)

⇢(1)(q1) ⇢(1)(q2)
, (7.72)

where ⇢(2)(q1,q2) is the 2-point density (see Eq. (7.38)). In arriving at the Orstein-Zernike relation
relation in Eq. (7.70), use is made of the relationship

C(2)(q1,q2) = ⇢
(1)(q1)⇢

(1)(q2)h
(2)(q1,q2) + ⇢

(1)(q1)�(q1 � q2), (7.73)

which can be derived by using the definition of h(2)(q1,q2) to eliminate ⇢(2)(q1,q2) from Eq. (7.43).
As an example of the use of Eq. (7.70) consider a homogensous fluid with constant density (⇢L). In

such a material, both the direct and pair correlation functions depend only of the separation between
positions in the fluid, and so their arguments can be written as r = |r| = |q1 � q2|. In this case
Eq. (7.70) becomes

h
(2)(r) = C

(2)(r) + ⇢L

Z
C

(2)(|r� r
00 |)h(2)(r00

)dr
00
, (7.74)

Taking Fourier transforms of both sides of Eq. (7.74) gives

Ĉ
(2)(k) =

ĥ
(2)(k)

1 + ⇢L ĥ(2)(k)
, (7.75)

where Ĉ
(2)(k) and ĥ

(2)(k) denote the Fourier transforms of the respective functions at the wavevector
of magnitude k. The somewhat tortuous path that brought us to Eq. (7.75) shows us that, at least for a
simple fluid, the direct correlation function –linkable to the second term in the expansion of the intrinsic
free energy of the system– is obtainable from knowledge of the pair correlation and paid distribution
functions, which in turn are both obtainable from neutron di↵raction experiments [5, 13]. Figure (7.1)
shows an example of g(2)(r) = g

(2)(|q1 � q2|) for aluminum as calculated by molecular dynamics.
Figure (7.2) shows a second example of a pair correlation function h(r) and the corresponding direct
correlation function C

(2)(r) for a hypothetical fluid whose microscopic interactions obey a Lennard-
Jones inter-atiomic potential. Several features are worthy of mention in C

(2). The large negative peak
near k ! 0; this controls the compressiblity of the liquid. At higher k values (shorter wavelengths),
C

(2)(r) exhibits a small peak near characteristic length which is of order nearest neightbour distance
between atoms of the liquid. We will see in the next chapter that the strength of this peak will be
crucial in controlling the ordering of the liquid during solidification.
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Figure 7.1: The pair distribution function g
(2)(r) for Aluminum at T = 926K calculated by molecular

dynamics. Courtesy of J. J. Hoyt, Department of Materials Science and Engineering, McMaster
University.

Figure 7.2: The pair correlation function h(r) (left axis) and direct correlation C(r) (right axis)
calculated by molecular dynamics of a Lennard-Jones fluid. Reprinted from Ref. [13].
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7.6 Density Functional Theory of Freezing

This theory begins by approximating the excess free energy in Eq. (7.60) by expanding around a
reference homogeneous fluid with chemical potential µ0 and corresponding density ⇢0. To do so, we
re-express the excess free energy as

Fex[⇢] = Fex[⇢0] +

Z
�Fex

�⇢(x)

����
⇢0

�⇢(x) dx+
1

2

Z Z
�⇢(x0)

�
2Fex

�⇢(x)�⇢(x0)

����
⇢0

�⇢(x) dxdx0 + . . . , (7.76)

where we defined �⇢(x) = ⇢(x) � ⇢0 and dropped the super-script from ⇢
(1)(x) to simplify notation.

We also set the external potential to zero for now. As we saw in the last section, the excess free energy
is the generating functional of direct correlation functions, via Eq. (7.65). The first of these is the
excess contribution to the chemical potential. We may express this as the total chemical potential less
the ideal contribution (see equation 7.55),

�Fex

�⇢

����
⇢0

= µ
ex(⇢0) = µ(⇢0)� µid(⇢0) = µ0 � kbT ln

�
⇤3
⇢0
�
. (7.77)

Truncating the expansion in equation 7.76 to second order in �⇢(x) and substituting the linear and
quadratic terms from equation 7.77 and 7.64, we can simplify the excess free energy to,

Fex[⇢(x)]=Fex[⇢0] +

Z �
µ0�kBT ln

⇥
⇤3
⇢0(x)

⇤ 
�⇢(x) dx

� kBT

2

Z Z
�⇢(x)C(2)

0 (x,x0)�⇢(x0)dxdx0
, (7.78)

where C
(2)
0 (x,x0) denotes the two-point direct correlation function evaluated at the reference state

around which we are expanding the density functional theory. Combining equation 7.55 with the
simplified excess free energy in equation 7.78, we can express total change in free energy, �F =
F � F [⇢0], as,

�F [⇢(x)] = kBT

Z ⇢
⇢(x) ln

✓
⇢(x)

⇢0

◆
� (1� �µ0)�⇢(x)

�
dx

� kBT

2

Z Z
�⇢(x)C(2)

0 (x,x0)�⇢(x0) dxdx0
. (7.79)

We find an equivalent expression for the grand potential after a Legendre transform,

�⌦[⇢(x)] = kBT

Z
dx

⇢
⇢(x) ln

✓
⇢(x)

⇢0

◆
� [ 1� ��(x) ]�⇢(x)

�

� kBT

2

Z Z
�⇢(x)C(2)

0 (x,x0)�⇢(x0) dxdx0
, (7.80)

where Eq. (7.80) has explicitly re-written the external potential �(r) into the grand potential func-
tional of the system. for completeness. This density functional theory like this was proposed by
Ramakrishnan and Yussou↵ [28] to describe freezing, where ⇢0 is taken to be the density of the liquid
on the first order transition line of a pure material (for a given temperature).
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7.6.1 Relation of C(2)
0 (x,x0) to the structure factor

It was noted that C(2)
0 (x,x0) is formally related to the inverse of the Ursell function via in Eq. (7.69).

Using the notation of Chakin and Lubensky, we denote the Ursell function as Snn(x,x0), and re-write
Eq. (7.69) as

C
(2)
0 (x,x0) =

�(x� x0)

⇢L
� S

�1
nn (x,x

0), (7.81)

where we set ⇢(1)(x)! ⇢L, which is the constant density of the liquid at the reference density around
which the excess energy terms are expanded. Further, the excess term in Eq. (7.79) (or Eq.(7.80)) can
be conveniently re-scaled in units of kBT⇢L according to

Fex

kBT⇢L
=

1

2

Z Z
�⇢̄ C̄(2)

0 (x,x0)�⇢̄(x0) dxdx0
, (7.82)

where �⇢̄ = (⇢�⇢L)/⇢L is a dimensionless density di↵erence and where we defined the function scaled

correlation function C̄
(2)
0 (x,x0) by

C̄
(2)
0 (x,x0) ⌘ ⇢LC(2)

0 (x,x0) = �(x� x0)� ⇢L S
�1
nn (x,x

0) (7.83)

It is noted that Eq. (7.82) can be identified with the excess term of equation 4.7.4 in Chapter 4 of

Chakin and Lubensky’s text book [4] if C̄(2)
0 (x,x0) is equated to ��1

0 (x,x0) in equation 4.7.5 of Ref. [4].
In closing this section, it is instructive to re-cast Eq. (7.83) in Fourier space, since in what follows

the correlation kernels used in XPFC type models will be defined directly in k-space by making
qualitative comparisons to Ŝnn(k). To do so, we will use some results about the structure factor of a
liquid derived in Chapter 2, Section 2.3 of Ref. [4]. In particular, the structure factor of a liquid is
given by

ŝ(k) = ⇢L

h
1 + ⇢L ĝ

(2)(k)
i

(7.84)

where ĝ
(2)(k) is the Fourier transform of the pair distribution function defined in Eq. (7.72). Using

Eq. (7.71) to write ĝ
(2)(k) = ĥ

(2)(k) + (2⇡)2�(k), and substituting this into Eq. (7.84) gives

ŝ(k)� (2⇡)2�(k)| {z }
Ŝnn(k)

= ⇢L

h
1 + ⇢L ĥ

(2)(k)
i
, (7.85)

where the underbrace on the left hand side of Eq. (7.85) is identified with the Fourier transform of the
Ursell function Ŝnn(k) (e.g., see equation 2.3.8 in Chapter 2 of Ref. [4]). From Eq. (7.85) we arrive at

⇢L ĥ(k) =
Ŝnn(k)

⇢L
⌘ S̄nn(k) (7.86)

where S̄nn(k) is dimensionless as for an ideal liquid Ŝ
ideal
nn = ⇢L. Since the Ursell function is identical

to the structure factor for k 6= 0, S̄nn(k) is essentially the same as the dimensionless structure factor.

Substituting Eq. (7.86) in Eq. (7.75) finally allows us to re-cast C̄
(2)
0 (x,x0) in Eq. (7.83) in Fourier

space as

ˆ̄
C

(2)
0 (k) ⌘ ⇢LĈ(2)

0 (k) =
S̄nn(k)

1 + S̄nn(k)
(7.87)

It is noted that ˆ̄
C

(2)
0 (k) is a dimensionless two-point direct correlation function, and is actually what

is considered (or what should be considered) when formulating the dimensionless phase field crystal

models examined below, since [Ĉ(2)
0 (k)] = m

3
/#.
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7.6.2 Moving on to phase field crystal models

This section has culminated with the derivation of a simple density functional theory for an inhomo-
geneous fluid expanded as a perturbation from a ideal reference liquid in terms of direct correlation
functions defined at the reference fluid state (density and temperature). The direct correlation func-
tions are in turn related to the density correlation functions generated by the grand potential of the
system, and which can also be related to experimental measurements (at least the lower-order ones).
Specifically, we have arrived at a way of relating the direct correlation functions entering the free
energy functional in Eq. (7.80) to the structure factor of the reference liquid, which is measurable.
While DFT type theories like that in Eq. (7.80) have been well established over the years and used
to understand the properties of inhomogeneous fluids, we will at this point get o↵ the ”classical DFT
train” and take a di↵erent turn. Namely, we used Eq. (7.79) as a starting point from which to derive
various phase field phenomenologies through which to study solidification phenomena. It will be seen
that two essential ingredients in developing such phase field theories will come down to the construc-

tion of the two-point direct correlation function ˆ̄
C

(2)
0 (k) at and close to the coexistence temperature

and density, and the way the logarithm terms from the ideal free energy are treated. As an example,
a convenient simplification that is used to map the formal density functional theory developed in this
section onto the original PFC model of Ref. (??), to be examined in detail below, is to approximate the
structure factor by a single peak in k-space, fit to a quartic function near k ⇡ k0, where k0 represents
the main Bragg peak of BCC (or hexagonal in 2D) crystals to be modelled by the PFC theory.

S̄nn(k) ⇡
⌧

r + c(k � k
2
0)

2
(7.88)

where ⌧ = T/T0 with T being temperature, T0 a reference temperature, r, c dimensionless constants
and k0 is the magnitude of the main Bragg peak of the structure factor of a liquid near coexistence.
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Chapter 8

Phase Field Crystal (PFC) Theory

This section starts from Eq. (7.79), and properties of the correlation function discussed at the end
of Section (7.6) to expand the derivation of the basic phase field crystal (PFC) model developed in
Chapter 8 of Reference [26] into a class of more generalized PFC type models that are conceptually
better connected to the classical DFT (cDFT) theory developed at the end of Chapter 7, but which
still hold the salient features of the original PFC model introduced by Elder and Grant [8]. This
new class of PFC models are coined under the name structural PFC models, or XPFC models for
short. The main di↵erence between XPFC models and the original PFC model is that the former can
stabilize a wider range of crystallographically complex phases and e�ciently model phase transitions
between these phase in density-temperature space.

8.1 Simplifying cDFT Theory

An important step in obtaining most PFC type models is the simplification of the original second
order cDFT theory described by Eq. (7.79). To do so, it is useful to work with a dimensionless relative
density n(x) = (⇢(x) � ⇢0)/⇢0, where ⇢0 is a reference density, typically taken as the density of the
liquid at coexistence [26]. We will also set µ0 = 0 for simplicity as this will not alter the results of this
discussion in any fundamental way. The free energy thus becomes

�F [n(x)]

kBT0⇢0
=

Z
dx ⌧ { (n(x) + 1) ln (n(x) + 1)� n(x) }

� 1

2

Z Z
n(x) ⌧

h
⇢0C

(2)
0 (|x� x0|)

i
n(x0) dx dx0

, (8.1)

where we have also scaled temperature as ⌧ = T/T0, where T0 is a reference temperature; in what
follows To will be chosen to correspond to the coexistence temperature at which ⇢0 is evaluated. The
correlation function in Eq. (7.76) is written in translationally invariant form since it represents the
direct correlation function of the liquid evaluated at (⇢0, T0). The correlation function C

(2)(|x � x0|)
has units [C(2)] = 1/# and can be expressed as a Fourier transform, shown here for later use,

C
(2)
0 (|x� x0|) = 1

2⇡

Z
Ĉ(|k|)eik·(x�x0)

d
3k (8.2)

where [Ĉ] = m
3
/#. To proceed further, we expand the bulk (i.e. non-correlation) terms to fourth

order in the n, the free energy can be re-expressed as

�F

kBT0⇢0
=

Z
dx ⌧

⇢✓
n
2

2
� n

3

6
+

n
4

12

◆
�n(x)

2

Z
dx0 [⇢0C

(2)
0 (|x� x0|)]n(x0)

�
(8.3)
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This simplified cDFT in Eq. (8.3) is the strating point of most PFC studies in the literature.

8.2 Recovering the Traditional PFC Model

It is instructive to review here the derivation of the standard PFC model emerges from Eq. (8.3). The
starting point is to specializs the direct correlation function to the simple single-peaked from

C
(2)
0 (|x� x0|)=

⇣
�Ĉ0 � Ĉ2r2

x0 � Ĉ4r4
x0

⌘
�(x� x0), (8.4)

where gradient notation rx0 implies that the operation is on the [dimensional] variable x0. The Fourier
space equivalent of this correlation is

Ĉ(|k|) = �Ĉo + Ĉ2k
2 � Ĉ4k

4 (8.5)

where k = |k|. Equation (8.5) defines a single-peaked function with a negative k = 0 value and a
maximum at finite wavelength if Ĉo > 0, Ĉ2 > 0 and Ĉ4 > 0. Moreover, the solution of dĈ/dk = 0
sets the scale of the lattice spacing as (dropping the 2⇡)

a =
1

kpeak
=

s
2Ĉ4

Ĉ2

(8.6)

Papers studying the physics of the standard PFC model often work in dimensional spatial variables,
where space is scaled according to r = x/a, where a is the lattice spacing of the crystal phase that
emerges. They also assume isothermal conditions, thus setting the reference temperature to T0 ! T ,
making ⌧ = 1. These scalings transform Eq. (8.3) to

�F

kBT⇢0a
3
=

Z
dr

⇢✓
n
2

2
� n

3

6
+

n
4

12

◆
�n(r)

2

Z
dr0 [⇢0a

3
C

(2)
0 (a|r� r0|)]n(r0)

�
(8.7)

Substituting Eq. (8.4) into Eq. (8.7) turns the correlation term in the large bracket to

⇢0 a
3
C

(2)
0 (a|r� r0|) ⌘ C(|r� r0|) =

 
�⇢0Ĉ0 �

⇢0Ĉ2

a2
r2

r0 �
⇢0Ĉ4

a4
r4

r0

!
[a3�(ar� ar0)], (8.8)

where we identify a
3
�(ar� ar0) = �(r� r0), the dimensionless delta function 1, and note that [⇢0Ĉ0] =

[⇢0Ĉ2/a
2] = [⇢0Ĉ4/a

4] = 1. Furthermore, by substituting the expression of Eq. (8.6) into Eq. (8.8) we
obtain

C(|r� r0|) =
�
1��B �B

x(1 +r2
r0)

2
�
�(r� r0), (8.9)

where we have define the shorthand notation

B
x =

⇢0Ĉ2

2a2
=
⇢0Ĉ4

a4
=
⇢0Ĉ

2
2

4Ĉ4

B
l = ⇢0Ĉo + 1

�B = B
l �B

x (8.10)

1
To see this, consider re-expressing the delta function as lim�!0{(1/�

3
)1�[x]}, where 1�[x] is the indicator function,

which returns unity on the measure x 2 [��/2, �/2].
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In terms of these definitions, Eq. (8.7) can be re-expressed as

�F

kBT⇢0a
3
=

Z
dr

⇢✓
n
2

2
� n

3

6
+

n
4

12

◆
�n(r)

2

Z
dr0 n(r0)

�
1��B �B

x(1 +r2
r0)

2
�
�(r� r0)

�
, (8.11)

The final form of the traditional PFC model is obtained by completing the integral in r0 in Eq. (8.11)
and collecting terms in powers on n(x). This gives

�F

kBT⇢0a
3
=

Z
dr

⇢
�⌘n

3

6
+ �

n
4

12
+

n

2

h
�B +B

x
�
1 +r2

r

�2i
n

�
(8.12)

In order to make the PFC model more robust in capturing deviations away from purely ideal, the local
terms in Eq. (8.11) have been scaled by free [dimensionless] parameters ⌘ and �. In theory, these can
be seen as contributions from higher order correlation terms. Finally, the [dimensionless] constants
in Eq. (8.12) can be converted into corresponding free energy density units by multiplying each by
kBT0. The equilibrium and dynamical properties of the standard PFC model is discussed in detail in
Ref. [26] and will not be discussed further here.

The parameter �B is usually treated as a PFC model temperature. The dependence on tem-
perature enters through the fact that �B is related to the structure factor evaluated at the peak
wavevector of the triangular lattice formed (in 2D) by Eq. (8.12). Namely, it is straightforward to
show that Bl � Bx = 1 � ⇢0Ĉ(|kpeak|) = 1/S(|kpeak|). For a thorough analysis of the PFC model of
Eq. (8.12) the reader is referred to Ref. [26]. In what follows, we expand the context of PFC to include
a di↵erent class of correlation kernels.

8.3 Structural PFC Model (XPFC)

If instead of expanding C
(2)(|x � x0|) in a finite series of gradients it is left as some analytic form

defined over all of k-space, then Eq. (8.3) becomes the Structural PFC model, or XPFC models
for short. The main idea of XPFC models is to reconstruct the direct twp-point correlation functions
phenomenologically in k-space in a way that reproduces the salient features of interest of the true direct
correlation function. Of course, as a phase field theory, XFPC models must still expand the logarithmic
terms in the ideal free energy to make the resulting theory tractable for dynamical simulations over
experimentally relevant domain sizes 2.

One convenient form used for ⇢0C(2)(|x � x0|) used to specialize Eq. (8.3) to the XPFC model is
given by

⇢0Ĉ(k) = �(|k|) +
X

↵

e

T

T0 e
�

(|k|�|k↵|)2

2�2
↵ (8.13)

where �(|k|) is non-zero and negative near k = 0, and rapidly decays to zero for k > 0. In the second
term, the index ↵ runs over families of point group symmetry-equivalent planes, whose reciprocal
lattice vectors share a common magnitude |k↵|. The parameter �↵ is the width of the correlation
peak at k = k↵. The temperature dependence of the correlation peaks is achieved through the
prefactor exp (T/T0), which gives the correct temperature scaling of the amplitudes at temperatures
much higher than the Debye temperature 3. In principle, the peaks of the XPFC correlation function

2
Recently, a new class of XPFC models has emerged that retain the logarithmic structure at long wavelengths, thus

allowing more quantitative control of solid-liquid-vapour properties.
3
The first version of the XPFC model used a phenomenological temperature parameter to control the change of the

correlation peak height according to Ĉ(|k|) ⇠ exp
�
��

2
�
. Later, this form was changed to the one in Eq. (8.13) following

Ref.[1]
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can be constructed to fit the properties computed from molecular dynamics. Thus, the sum over ↵
can run over several modes of reflection in order to stabilize exotic defect structures [2]. However, for
most calculations only the ↵ corresponding to the first 1-2 modes of reflection of the emergent crystal
structures are kept. It is also noted that XPFC model also scales the n3 and n

4 terms in the local free
energy by ⌘ and �, respectively.

8.4 Equilibrium Properties of the XPFC model

To understand how Eq. (8.3) in conjunction with Eq. (8.13) give rise to crystallization of metallic
phases, it is instructive to explore the phase diagram supported by the model. To do so, the following
ansatz will be adopted to describe the density field n(x),

n(r) = n0 +
X

↵

�↵

0

@
X

G2{G}↵

e
iG·x

1

A+ c.c., (8.14)

where c.c. denotes complex conjugate, while n0 is the average density of a phase, which is zero for the
liquid within coexistence (since the liquid remains at the reference density ⇢0), and takes on non-zero
values for the solid, denoted ns = (⇢s � ⇢0) /⇢0. The second term is used to describe ordering in solids.
As with the XPFC correlation function, the label ↵ in the first sum runs over families of crystal planes
that share the same set of symmetry operations and are characterized by the set of reciprocal lattice
vectors {G}↵. The inner sum superimposes density waves with reciprocal lattice vectors in the set
{G}↵, with each such superposition weighted by an amplitude �↵. It is noted that in equilibrium
calculations, both n0 and �↵ are taken as bulk constants of a phase.

8.4.1 Crystallography of the single mode expansion

We will first consider Eq. (8.14) for the description of BCC phase. A common set of primitive lattice
vectors for the BCC lattice is given by [4, 7]

a1 =
a

2
(x̂+ ŷ + ẑ) , a2 =

a

2
(x̂+ ŷ + ẑ) and a3 =

a

2
(x̂� ŷ + ẑ) , (8.15)

where (x̂, ŷ, ẑ) form the axes of the conventional unit cell of BCC. From this set of real space primitive
lattice vectors can be derived the corresponding set of reciprocal lattice vectors,

q1 =
2⇡

a
(x̂+ ŷ) , q2 =

2⇡

a
(x̂+ ẑ) and q3 =

2⇡

a
(ŷ + ẑ) (8.16)

where and each vector has a magnitude 2⇡/a a being the lattice constant of the BCC unit cell. Just as
any lattice point in the real space lattice can be represented as a linear combination of (a1, a2, a3), any
reciprocal lattice vectors of the BCC lattice can be constructed by linear combination of (q1, q2, q3)
according to G = hq1 + kq2 + lq3, where (h, k, l) are integers. Each vector G defines a normal
to a family of planes in real space lattice 4. The lattice planes causing the first (i.e dominant)
mode of reflection in the BCC lattice are normal to a set of six reciprocal lattice vectors indexed
by (h k l) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1,�1, 0), (0, 1,�1), (�1, 0, 1). This first mode of reflection is
denoted by ↵ = 1, and the above set of (h k l) defines {G}

↵=1 in Eq. (8.14). Retaining only the ↵ = 1

4
The coe�cients (h k l) are called Miller indices and their significance is that the first plane normal to G cuts through

the q1 axis at |q1|/h, the q2 axis at |q2|/k and the q3 axis at |q3|/l.
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term in the sum of Eq. (8.14), denoting �↵=1 = � and substituting the set {G}
↵=1 gives, after some

simple manipulations,

n(x, y) = n0 + �[cos(qx) cos(qy) + cos(qx) cos(qz) + cos(qy) cos(qz)], (8.17)

where q = 2⇡/a, and where we have defined a =
⇣p

2/3
⌘
ã, with ã being a reference unit cell edge

length. This somewhat strange definition of a arises as follows. We will want to later model the
crystallization of both FCC and BCC phases using the same multi-peaked correlation function in the
model of Eq. (8.3). The dominant mode of reflection of FCC crystals happens from {1 1 1} planes 5.
The distance to these planes from the origin of a unit cell is the inverse of the length of any {1 1 1}
reciprocal lattice vector, which is

p
3 (in units of 2⇡/a). On the other hand, the dominant mode of

reflection for a BCC lattice happens o↵ {1 1 0} planes, whose length in reciprocal space is
p
2. It is

thus not possible to model the first (dominant) modes of reflection for both BCC and FCC using a
common first peak for Ĉ(k). There are two fixes. The simple one is to re-scale the lattice constant of
the BCC unit cell to be

p
2/
p
3 time that of the FCC lattice constant, i.e. ã = aFCC [12]. Perhaps a

more realistic fix would be to make the peak positions in Ĉ(k) shift according to the local temperature,
i.e. make Ĉ(k)! Ĉ(k; ⇢0(T )). For simplicity, we will stick to the first method here. For convenience,
we set ã = 1 hereafter.

8.4.2 Mean field free energy density of BCC solid-liquid system

With Eq. (8.17) in hand, the next step is to use Eq. (8.17) to calculate the free energy density of a
BCC-liquid system using the model of Eq. (8.3). This is done by substituting Eq. (8.17) into Eq. (8.3),
integrating Eq. (8.3) over the volume of the conventional unit BCC unit cell cell, and normalizing by
dividing by a

3. Following this, the resulting free energy density is minimized, seeking solid solutions
with (� > 0, n0 > 0) and liquid solutions with (� = 0, n0 > 0). For the moment, it is not necessary to
specify a particular form for the two-point direct correlation function other than to say that it must
be expandable in a Fourier series according to Eq. (8.2). For simplicity, the scaled temperature ⌧ = 1
is assumed in what follows.

8.4.2.1 Interaction free energy

Beginning with the non-local term in Eq. (8.3), it is instructive to go over the algebra for this important
term for readers new to PFC type equilibrium calculations. To make the algebra tractable, the
expansion of the form Eq. (8.14) is substituted for n(x) and n(x0), and Eq. (8.2) is used formally to

5
Note that when materials science texts reference “{1 1 1}”, “{1 1 0}” or other families of lattice planes, they are

usually using the reciprocal lattice vectors defined in the setting of the conventional unit cell of BCC or FCC.
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represent C(2)
0 (|x� x0|). This yields,

F̄int[n0,�] = � 1

2V

Z
n(x)

h
⇢0C

(2)
�
|x� x0|

�i
n
�
x0
�
dxdx0

= � ⇢0

2V

Z Z Z
dk

2⇡
dx dx0

n
n
2
0Ĉ(k) eik·x eik·x

0
o

+ � ⇢0

2V

X

i

Z Z Z
dk

2⇡
dx dx0

n
2n0� Ĉ(k) eiGi·x e

ik·x
e
ik·x0

o

+ � ⇢0

2V

X

i

Z Z Z
dk

2⇡
dx dx0

n
2n0� Ĉ(k) eiGi·x0

e
ik·x

e
ik·x0

o

+ � ⇢0

2V

X

i

X

j

Z Z Z
dk

2⇡
dx dx0

n
�
2
Ĉ(k) eiGi·x e

iGi·x0
e
ik·x

e
ik·x0

o
(8.18)

Each of the integrals above can be simplified using the properties of the delta functions, analogously
to the approach used in Section 5.2.1. For example, completing the dx dx0 integral on the second line
gives

Z Z Z
dk

2⇡
dx dx0

n
n
2
0Ĉ(k) eik·x eik·x

0
o

=
⇢0 n

2
0

V

Z
dk

2⇡
Ĉ(k)

✓Z Z
dx dx0

e
ik·x

e
ik·x0

◆

=
⇢0 n

2
0

V

Z
dk

2⇡
Ĉ(k)V 2

�(k)

! ⇢0 n
2
0

V 2

X

ki

Ĉki
V

2
�0,ki

= n
2
0⇢0Ĉ(0) (8.19)

where Eq. (5.36) was used between the first and second lines, and where the discrete limit was taken
to go form the second to last line since the calculation is in a finite volume 6. Proceeding similarly for
the third and fourth lines of Eq. (8.18) reveals that they vanish since the sums do not include a Gi = 0
term as this is explicitly represented by the n0 term of Eq. (8.14). For the last line of Eq. (8.18), the
spatial integrals are similarly done first, and the remaining dk integral is taken over to the discrete
limit as a sum with over a Kroneker delta function. The result, combined with that in Eq. (8.19),
gives

F̄int[n0,�] = �
1

2
⇢0 Ĉ(0)n2

0 �
1

2

⇣
6 ⇢0 Ĉ(|k110|)

⌘
�
2
, (8.20)

where the factor of 6 represents the total number of ways Gi +Gj = 0 for all (i, j) pairs in the sums
implied by the first mode sum in Eq. (8.14). The notation |k110| denotes the common magnitude of
all Gi in the first mode.

8.4.2.2 Local free energy terms

Moving on to the local terms of the free energy functional is more straightforward. Substituting
Eq. (8.14) into Eq. (8.3) yields an integrand with a large number of simple terms each of which
contains a complex exponential phase factors of the form qx ± qy ± qz. It is not practical to show

6
The discrete limit of

R
�(k) dk/(2⇡) ! (1/V )

P
ki
�0,ki , where �0,ki is the Kroneker delta function. Another useful

result here is the discrete limit of
R
dx exp {i(k� k0

) · x} ! V �k,k0
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them here, however, the reader that has never done this type of calculation before is advised to square
Eq. (8.14) to see for themselves 7. Carrying out the integration all complex exponential terms reveals
that only a small fraction of them survive; namely, the ones whose phase factor vanish. All other
terms contribute zero because they oscillate an integral number of times within the volume of the unit
cell. The result from the non-vanishing terms gives the following local free energy density,

F̄loc[n0,�]=
1

2
n
2
o �

1

6
⌘n

3
o +

1

12
�n

4
o + 6

�
1�⌘n0+�n

2
0

�
�
2 + 8 (2�n0�⌘) ⌘�3 + 45��4 (8.21)

The expression F̄loc[n0,�] corresponds to the mean field behaviour of the local terms Eq. (8.3), with
the rapidly oscillating parts of the density integrated out.

8.4.2.3 Total BCC-liquid mean field free energy

The total mean field free energy approximation corresponding to Eq. (8.3) is thus the sum F̄ [n0,�] =
F̄loc[n0,�] + F̄int[n0,�], namely,

F̄ [n0,�] =
1

2
n
2
o �

1

6
⌘n

3
o +

1

12
�n

4
o + 6

�
1�⌘n0+�n

2
0

�
�
2 + 8 (2�n0�⌘) ⌘�3 + 45��4

� 1

2
⇢0Ĉ(0)n2

0 � 3 ⇢0Ĉ(|k110|)�2 (8.22)

It is noted that Eq. (8.1) should also be multiplied by ⌧ to re-introduce the correct temperature scaling
inherited from Eq. (8.3). This just re-scales the coe�cients ⌘ and �, which were assumed to have a
⌧ dependence anyway. However, the multiplication by ⌧ adds an non-trivial temperature dependence
to the correlation terms, which also contain an added temperature dependence via Eq. (8.13).

It is interesting to examine the behaviour of Eq. (8.22) as a function of 1 � ⇢0Ĉ(|kpeak|) =
1/S(|kpeak|). Figure 8.1 shows F̄ [n0,�] for three values of S(|kpeak|), with the left figure correspond-
ing to the lowest S(|kpeak|) (highest temperature) and the right figures corresponds to the highest
S(|kpeak|) (lowest temperature). Consistent with Landau theory of first order phase transformations,
there is one stable free energy well at high temperatures, which gives way two two discontinuous wells
at lower temperatures, one of which is meta-stable relative to the other until some temperature that
marks the first order transition point. Here, the non-conserved order parameter (�) is coupled to the
phase density (n0), which is the mean of a conserved order parameter. As a result, the system below
the transition temperature with n0 running through the downward concave part of the free energy can
separate into two phase volumes, each with its own density and corresponding order parameter that
depends on this density. For example, a system in Figure 8.1 with n0 ⇡ 0.05 will thus separate into a
liquid with (nl = 0,�l = 0) and a solid with (ns > 0,�s(ns) > 0).

8.4.3 Phase Coexistence and Construction of Diagrams

This sub-section reviews the steps to construct the phase diagram between solid and liquid analytically.
First, the free energy is minimized with respect to � according to @F̄ [n0,�]/@� = 0. This yields two
solutions, one is �min = 0 and the other,

�min(n0) =
1

30�

⇢
�4�n0 + 2⌘ +

q
�44�2n2

0 + 44�n0⌘ + 4⌘2 � 60�+ 30�⇢0Ĉ(|k110|)
�

(8.23)

7
It is not advised to do this calculation by hand, but rather to use a symbolic manipulation software such as Mathe-

matica or Maple.
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Figure 8.1: Mean field free energy of the XPFC model showing one phase (well) at � = 0 when the
structure S(|kpeak|) = 1� ⇢0(|kpeak|) is small (left image), and the discontinuous emergence of second
ordered phase with �(n0) > 0 as S(|kpeak|) increases (middle and right images).

The �min = 0 solution corresponds to the liquid phase, while the solution of Eq. (8.23) corresponds to
the BCC phase. It is Using these expressions for the order parameter, each phase’s free energy can
written as a function of its density, i.e.

fliq(n0) = F̄ [n0, 0]

fBCC(n0) = F̄ [n0,�min(n0)] (8.24)

Figure 8.2 shows a plot of fliq(n0) and fBCC(n0) for typical model parameters. It is noteworthy that
while the liquid mean field free energy is defined over the entire range of density shown, the solid
free energy ceases to exist below a critical density. This implies that the solid phase cannot exist
below this density since the radical in Eq. (8.23) becomes negative for lower values of n0. The line
touching both curves comes from the common tangent or Maxwell equal area constructions described
in Section 1.7. This construction is used to calculate the densities of coexisting phase, as well as their
common chemical potential. It can be done by minimizing the total system free energy (composed of
a weighted sum of the free energies of each phase) subject to mass conservation. Alternatively, one
can fine the coexistence equilibrium by equating the pressures and chemical potentials of each phase.
Using fliq(n0) and fBCC(n0) to construct the co-existence densities at di↵erent temperatures produces
a phase diagrams for the BCC-liquid co-existence.

111



Figure 8.2: Free energy of liquid (top curve) and solid (lower curve). The solid does not exist below
where fBCC(n0) ceases since �min(n0) ceases to exist. Common tangent line is also shown.

112



Chapter 9

Dynamics in Classical Field Theories

From the very nature of its derivation from density functional theory, the XPFC density order pa-
rameter n(x, t) is a density di↵erence. The n field in Eq. (8.3) thus expected to evolve according to
conserved dynamics. Moreover, it is expected that in the di↵usive limit of microstructure evolution,
density dynamics must take on the form of a Langevin equation. here, the fluxes that drive density flow
are determined from gradients of thermodynamic potentials [26] of an associated ensemble being con-
sidered. These fluxes serve as conjugate variables to some intensive variable. There are also rigorous
treatments deriving the dynamics of classical fields from first principles, and the basic Langevin-type
equations governing the PFC type models can be also be shown more formally to be spacial cases of
these. They yield modifications to from Model B dynamics, but their essence remains similar, and
usually requires some degree of phenomenological intervention informed by physical intuition to arrive
at the final form of the dynamical equations. Three approaches for deriving XPFC dynamics for a
single component density field are shown in this section.

9.1 Dynamic Density Functional Theory (DDFT)

One path to arrive at the density dynamics of the PFC density field comes is motivated from ideas of
non-equilibrium statistical mechanics. This is reviewed below by examining first what is mean by a
microscopic mean field density and then deriving a series of equations that approximate its dynamics.
.

9.1.1 Non-equilibrium statistical mechanics

The first thing to consider is how quantities that depends on the phase space coordinates and momenta
of a system and are out of equilibrium are averaged. To address this question, consider a non-
equilibrium probability distribution f(q,p; t) over the phase space of a material system, as defined in
Section 7.1. The dynamical evolution of f(q,p; t) follows from classical mechanics accordng to

df

dt
= {f,H}+ @f

@t
, (9.1)

where {f,H} is the Poisson bracket defined by

{f, g} =
NX

i=0

@f

@qi

@g

@pi
� @g

@qi

@f

@pi
. (9.2)
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The distribution f(q,p; t) must remain normalized in time as it flows through phase space, and so
Z

dqdp f(q,p; t) = 1 (9.3)

As a result, its total time derivative is zero df/dt = 0. This simplifies Eq. (9.1) to the so-called
Liouville Equation,

@f

@t
= � {f,H} (9.4)

Assuming ergodicity (not always guaranteed in low dimensional Hamiltonian systems!), the Liouville
Equation will evolve f(q,p; t) towards its thermodynamic equilibrium distribution feq(q,p), i.e.,

lim
t!1

f(q,p; t) = feq(q,p) (9.5)

The equilibrium distribution feq(q,p) is used to compute equilibrium averages, such as, for example
the local density in equilibrium, which is done by substituting it for feq(q,p, N) in Eq. (7.2).

In the non-equilibrium dynamics literature, the form of Eq. (7.2) is tacitly assumed to hold for
calculating non-equilibrium averages of microscopic quantities by making the substitution feq(q,p)!
f(q,p, t), with the proviso that the system is su�ciently close to equilibrium. For example, the
non-equilibrium coarse grained density is thus assumed to given by

⇢(x, t) = h⇢̂(x;q)i = Tr [⇢̂(x;q)f(q,p, t)] (9.6)

where ⇢̂(x;q) is the microscopic density operator and where the average h·i denotes weighting by the
non-equilibrium phase space density f(q,p, t). Here, the Tr [· · ·] operation has been used to denote
the sum and integrations in Eq. (7.2). Averages of other quantities operating out of equilibrium will
be computed analogously to Eq. (9.6); one such other quantity examined in the next subsection is the
di↵usivity.

9.1.2 Density evolution as a Markov process

In the context defined by the non-equilibrium ensemble of f(q,p, t), the spatiotemporal dynamics
of a microscopic density field can also be derived as a Markov process using so-called projection
operator methods 1. The mathematical details are shown in Ref. [9]. Intuitively, the main idea is
to describe the evolution of the non-equilibrium density ⇢(x, t) as a Markovian process that is driven
by its [non-equilibrium] conjugate variable �F [⇢]/�⇢(x, t) (F is the system’s free energy) through a
so-called Green-Kubo type of relation. Specifically in this formalism, the dynamics of ⇢(x, t) take on
the form 2

@⇢(x, t)

@t
=

Z
dx0Dx,x0(t)

�F [⇢]

�⇢(x0, t)
, (9.7)

withDx,x0(t) being a non-local interaction kernel known as the dissipation matrix. This kernel describes
the transition rate from the position x0 to the position x (as with any Markov-type theory) and weights
this transition by the local chemical potential strength at x0. It then integrates all neighbouring
transitions that are possible from x0 to x. The dissipation matrix must take the form Dx,x0(t) =

1
This is a formalism developed to approximate the time-dependent solution of the Louiville equation by an approxi-

mate solution.
2
The phrase “takes on the form” should be taken with caution, since most coarse graining theories are based on

microscopic formalisms that, at some point(s) in their derivation, must take several leap of faith to wash (or perhaps

wish) away atomic fluctuations and leave behind equations for a mesoscale variable. Here, we follow more of an intuitive

approach.
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[rxrx0D(x,x0
, t)] such that Eq. (9.7) be derivable from a mass conservation law, as we we’ll see

below. The matrix D(x,x0
, t) is called the di↵usion tensor and given by the Green-Kubo relation

D(x,x0
, t) =

Z
⌧

0
dt0Tr

h
f(q,p, t)Ĵ(x, 0)Ĵ(x0

, t
0)
i
, (9.8)

where Ĵ(x, t) is the microscopic density flux (or particle flux) operator defined by

Ĵ(x, t) ⌘
NX

i=1

vi(t)�(x� qi(t)) (9.9)

with vi(t), qi(t) are the velocity and position of particle i, respectively, at time t. Here ⌧ is a charac-
teristic time scale that is longer the decay time of flux correlations but shorter than the time scale over
which f(q,p, t) changes 3. The operation Tr [f(q,p, t) · · ·] in Eq. (9.8) takes a non-equilibrium average
of the flux correlator Ĵ(x, 0)Ĵ(x0

, t
0) over the configuration space spanned by {qi(0),vi(0),qi(t0),vi(t0)}

for i = 1, · · · , N particles. It is noted that the time dependence of D(x,x0
, t) enters solely through

the non-equilibrium phase space density f(q,p, t).
Substituting the explicit form for Dx,x0(t) into Eq. (9.7), performing an integration by parts with

respect to the rx0 and taking the rx operator out of the integral gives a more intuitive and “Model
B”-looking form for the dynamical equation for the density,

@⇢(x, t)

@t
= r ·

Z
dx0D(x,x0

, t) ·r0
�F [⇢]

�⇢(x0, t)

�
, (9.10)

where r0 denotes di↵erentiation with x0. Equation (9.10) describes conserved dynamics, where the
expression in the large bracket plays the role of a mass lfux, Jmass, whose gradient drives changes in
⇢(x, t). Here, Jmass picks up non-local flux contributions at x from neighbouring positions.

The di↵usion matrix can be simplified. Specifically, substituting Eq. (9.9) into Eq. (9.8) gives

D(x,x0
, t) =

NX

i=1

NX

j=1

Z
⌧

0
dt0Tr

⇥
f(q,p, t)vi vj (t

0) �(x� qi)�(x
0 � qj(t

0))
⇤

⇡
NX

i=1

NX

j=1

Z
1

0
dtTr

⇥
f(q,p, t)vi vj (t) �(x� qi)�(x

0 � qj)
⇤

(9.11)

In the second line of Eq. (9.11) the limit ⌧ ! 1 was taken since ⌧ is assumed to be longer than
the fluctuation-correlation decay time. Moreover, the time dependence in qj(t0) was ignored as the
coordinates are assumed to change very slowly compared to the particles velocities and t

0 ! t since
f(q,p, t) changes negligibly over the decay time of velocity correlations. Equation (9.11) shows that
the di↵usion tensor picks up large correlations between two points x and x0 if the velocities there are
strongly correlated over the characteristic time ⌧ . Theories using equation 9.7 and or its variations
are typically referred to as Dynamic Density Functional Theories (DDFT).

The non-locality implied by Eq. (9.11) poses a severe limitation for simulating Eq. (9.10). It is
reasonable to assume that the particle positions and coordinates can be taken as being statistically
independent, which makes them decouple, giving

D(x,x0
, t) =

NX

i=1

NX

j=1

Z
1

0
dtTr [f(q,p, t)vi vj(t)] Tr

⇥
f(q,p, t) �(x� qi)�(x

0 � qj)
⇤

= D0 1 ⇢(x, t)�(x� x0) (9.12)

3
It is assumed through this formalism that the phase space density f(q,p, t) changes more slowly than any relevant

process in the system.
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where 1 is the identity matrix (which picks up the units of the second trace) and D0 is the standard
di↵usion coe�cient given by

D0 =
1

3

Z
1

0
dtTr [f(q,p, t)vi(0) · vi(t)] . (9.13)

Substituting Eq. (9.12) into Eq. (9.7) simplifies it to the form suggested by Ref. [21],

@⇢(x, t)

@t
= r ·


D0⇢(x, t)r

�F [⇢]

�⇢(x, t)

�
. (9.14)

where, here, the units of [D0] = m
2
/s. An analogous approach can be followed to arrive at a “Model

A”-type equation for a non-conserved order parameter field � which has has become a standard
component of most phase field models.

Equation (9.14) of motion can also be extended to a Langevin equation. In this variant the equation
of motion describes the evolution of the partially course-grained density operator, ⇢̂(x, t). The addition
of stochastic noise is then added to Eq. (9.14) to capture fluctuations on length scales left out by the
course graining procedure. This Langevin equation analogue of Eq. (9.14) for ⇢̂(x, t) then becomes

@⇢̂(x, t)

@t
= r ·


D0⇢̂(x, t)r

✓
�F [⇢̂]

�⇢̂

◆�
+ ⇠(x, t),

h⇠(x, t)i = 0,
⌦
⇠(x, t)⇠(x0, t0)

↵
= �r ·

⇥
D0⇢̂(x, t)r�(x� x0)�(t� t

0)
⇤
. (9.15)

Equation (9.15) is essentially the governing equation used to simulate dynamics in all [nearly] all phase
field (PF) or phase field crystal (PFC) models, where, in the case of PFC, ⇢̂! ⇢, with ⇢ representing
the density operator averaged over some mesoscocpic time scale (i.e., not the same ⇢ as in Eq. (9.14)).
The noise can then be considered a spatially filtered version of the one in Eq. (9.15), representing the
longer-time and longer wavelength fluctuations in the evolution of ⇢. The PFC model is examined
further in the next section.

9.2 Model B Limit of DDFT: PFC Dynamics

The first of Equations (9.15) can be written as a mass conservation equation of the form

@⇢

@t
= �r · Jmass(x, t) (9.16)

where Jmass(x, t) represents the local flux of mass past a point x at time t. If particle position and
momenta in a given volume are taken to be uncorrelated in space and time, the flux is typically propor-
tional to the local thermodynamic force, which is drives the system toward thermal equilibrium at long
times. Following Eq. (7.31), we describe the local flux according to Jmass(x, t) = ��r (�F/�⇢(x, t)),
where here F is considered a free energy functional (units of J) of the field theory and � is a mobility
factor that is proportional to the average of the inverse time scale of local density fluctuations. To
reduce Eq. (9.16) to a PFC theory, we consider ⇢(x, t) as a [locally] coarse grained field in time, and
approximate � ⇠ constant. This turns Eq. (9.16) into a model B type equation of the form

@⇢

@t
= �r2

✓
�F

�⇢(x, t)

◆
+ ⇣ (9.17)
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Here noise is added to the flux in order to account for uncorrelated microscopic motions, as described
in the previous subsection. Since the noise represents fluctuations in density, it must be conserved,
moreover, since � is taken as constant, the analogue of the noise correlations in Eq. (9.15) for a PFC
theory satisfies

h⇣(x, t)⇣(x0
, t

0)i = �2kBT ⇢̄�r2
�(x� x0)�(t� t

0) (9.18)

Eq. (9.17) and Eq. (9.18) are a minimal reduction of the DFT type theory of the previous subsection
into a Model B type phase field theory. The dimensional units of the constants appearing in this
model are follows: [⇢] = 1/md, [�F/�⇢] = J/m

d, [r2] = 1/m2 and [⇣] = 1/(md
s) and [�] = m

2
/(J s).

It is desirable to work in a formalism that is expressed only in terms of the dimensionless density
n = (⇢ � ⇢̄)/⇢̄, dimensionless length r = x/a and dimensionless free energy F̄ = F/(kBT ⇢̄ a3). Here,
we express �F/�⇢ = (kBT ⇢̄) �F̄ /�n, where �F̄ /�n is a dimensionless integrand of a dimensionless
PFC free energy functional written in terms of n, as is done typically in the PFC literature. In these
dimensionless units, Eq. (9.17) becomes

@n

@t
=
⇥
kBT ⇢̄Mn/a

2
⇤
r2

r

✓
�F̄

�n

◆
+ ⇠ (9.19)

where rr acts on r, and (9.18) becomes

Mn =
�

⇢̄

⇠ =
⇣

⇢̄
, (9.20)

where the scaled noise ⇠ satisfies

h⇠(r, t)⇠(r0, t0)i = �2
⇥
kBT ⇢̄Mn/a

2
⇤

(⇢̄a3)
r2

r �(r � r
0)�(t� t

0) (9.21)

The units of [Mn] = m
d+2

/J ·s and [⇠] = 1/s, while [�F̄ /�n] and [n] are dimensionless. The a3 term in
the denominator of Eq. (9.21) comes from making the spatial delta function non-dimensional. Since
a is the lattice constant of a unit cell, the product ⇢̄a3 is the number of atoms per unit cell. In what
follows, the shorthand notation, nu ⌘ ⇢̄a3 is defined.

The above re-scalings and definitions make it possible to re-express the equations of motion in the
final dimensionless form to be used hereafter,

@n

@t
= M̄PFCr2

r

✓
�F̄

�n

◆
+ ⇠, (9.22)

where the PFC noise satisfies the fluctuation-dissipation theorem,

h⇠(r, t)⇠(r0, t0)i = �2 M̄PFC

nu

r2
r �(r � r

0)�(t� t
0) (9.23)

and where

M̄PFC = kBT ⇢̄
Mn

a2
(9.24)

The units of [M̄PFC ] = 1/s. Equations (9.22) and (9.23) show that XPFC dynamics are controlled
by one parameter, the mobility Mn, which can e↵ectively be seen to re-scale time. The Model B
type dynamics portrayed in Eq. (9.22) and other PFC model equations in the literature [26] are the
simplest dynamics that allow for consistent simulations of many salient features of microstructure and
defect evolution.
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9.3 “Quasi-Phononic” PFC Dynamics

As a model capable of incorporating solid-state defects and elasticity, the PFC model should be able
to propagate information from elastic deformations (strains, dislocation-dislocation interactions, etc)
on time scales much shorter than the di↵usional time scales implied by Model B type dynamics. This
requires a slightly di↵erent formulation that couples the di↵usive density transport to the hydrody-
namic models governing elastic modes in the solid. Doing so, however, come with severe pitfalls.
Once such pitfalls is that hydrodynamic modes in a solid propagate at the speed of sound. Thus,
incorporating such hydrodynamic modes into PFC solids rigorously (assuming that is even possible!)
would lead to a model that is not much better than directly using molecular dynamics and which,
in fact, does a much better job than PFC on these atomistic times scales. This would lead us right
back to the reason we would like to have course grained theories that operate on long wavelengths and
di↵usional times scales. Another avenue for resolving the aforementioned problem in the dynamics of
PFC (or, equivalently, XPFC) models involves using hydrodynamic considerations to adapt the PFC
phenomenology to include two time scales, one di↵usive and the other “inertial”, where the “inertial”
merely refers to using a phenomenological time scale to emulate rapid elastic relaxation e↵ects on the
PFC n on time scales that are more rapid than any of the di↵usive processes the model is emulating.
This e↵ectively allows us to separate time scales of di↵usive events driven by vacancies (e.g. creep,
grain boundary di↵usion, dislocation climb) from those operating on much faster times scales (e.g.
dislocation glide, elastic vibrations, etc). This is explored in remaining pages of this chapter.

9.3.1 Two-time dynamics in the PFC model

To incorporate di↵usive and rapid relaxation dynamics into the PFC model, we re-visit the hydro-
dynamics concepts discussed in Section 6.4. We start by taking the time derivative of both sides of
Eq. (6.65) and then substituting Eq. (6.64) on the right hand side of the result for @g/@t. This gives

@
2
⇢

@t2
= rirj⇡i,j

= rirj�
R
ij +rirj�

diss
ij , (9.25)

where repeated indices imply summation. For the case of slow deformation in a solid that we will be
considering here, the momentum flux tensor ⇡ij is equal to the stress tensor �ij . In the second line of
Eq. (9.25) we have tacitly split �ij in two parts. The first, �R

ij
, is the reactive (or thermodynamically

reversible) part, while the second part, �diss
ij

, denotes the non-reversible part of the stress tensor,
which arise from dissipative sources (e.g. vacancies, friction between volume elements, etc). Following
standard elasticity theory of deforming materials [16], the gradient of the reactive part of the stress
tensor can be obtained form the total internal energy or fre energy functionals of the deforming body
according to

rj�
R

ij =
�E
�ui

����
s,g, v

=
�F
�ui

����
T,v, v

(9.26)

where ui is the i
th component the displacement vector u = (ux(r), uy(r), uz(r)), which defines the

displacement of a volume element at position r at time t relative to its original position in the unde-
formed material (i.e. at some other position r0 in the fixed volume enclosed the system) 4. In writing

4
In what follows, we will only consider small (i.e. linear elastic) deformations of the solid phase around an undeformed

state and thus ignore convective e↵ects. The the instantaneous velocity of a volume element at position r will thus be

approximated by v = @tu ⌘ @u/dt.
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Eq. (9.26) it is tacitly assumed that there is a kinetic energy component to the energy potentials,
as was done in the hydrodynamics treatment following Section 6.2.2. Another subtlety of Eq. (9.26)
is that it requires a fixed vacancy fraction (denoted  v) rather particle number to be valid [10]; this
will be assumed in the following proceedings. In keeping with much of the PFC literature, we will be
considering here isothermal conditions in a fixed volume and hence we will work with a free energy
functional. We can thus write Eq. (9.25) as

@
2
⇢

@t2
= ri

✓
�F
�ui

◆
+rirj�

diss
ij (9.27)

Equation (9.27) is the basis from which we derive a phenomenology for two-time-scale PFC dynamical
equation.

Section 6.2.2 showed that the local free energy of a deforming volume element can be written as
a sum of its frame-fixed internal energy minus its kinetic energy. We adopt this approach here and
assume we can in theory write a total PFC free energy functional F whose integrand is decomposable
into an energy density term that is fixed with a moving volume of the materials and depends on the
local PFC density ⇢(r, t) (bulk and gradient terms, etc) minus the kinetic energy density written in
terms of the local velocity v (an intensive variable) and the local momentum g (an extensive variable).
The functional F is given by

F [s, ⇢,v] =
1

V

Z
dr

⇢
f(T, ⇢(r, t))� 1

2
g · v

�
(9.28)

Here, f(T, ⇢(r, t)) is the free energy density in the rest frame of volume element at position r and
v(r, t) is the volume element’s velocity. Integration is over the volume V of the system and r describes
a coordinates vector within the fixed volume V in which the entire system exists. It is recalled that
a PFC-type model free energy is a type of classical density functional theory (cDFT), which implies
that it is written entirely in terms of a mass density field ⇢(r, t). What is less apparent is that PFC
models inherently contain information about elastic strain, topological defects and vacancies. This
information is encoded in the density field through the gradient and bulk expansion of f(T, ⇢(r, t)),
several forms of which have been posited for di↵erent PFC models here and in the literature. As a
result, it will be assumed in what follows that there exists a constitutive equation relating the PFC
density to the local displacement field u(x) and the local vacancy fraction, which we denote here by
 v(x).

Taking the variation of the internal energy functional in Eq. (9.28) at fixed vacancy fraction gives

�F
�ui(y)

����
T,v, v

=

Z ⇢
�f

�⇢(x, t)

����
T

� 1

2
|v|2

� 
�⇢(x, t)

�ui(y)

����
 v

!
�(x� y) dx, (9.29)

where the first expression in the curly brackets on the right hand side is the usual chemical potential
µ(x, t) defined in PFC models through the functional f as

µ(x, t) =
�f

�⇢(x, t)

����
T

, (9.30)

where f is the corresponding free energy density, which can in theory be substituted for any PFC model
in the literature. It is emphasized that while, here, we split the total internal energy of the PFC model
in terms of local and kinetic e↵ects, in the final version of the PFC model these will subsumed back
into one internal energy expression written in terms of ⇢(x, t). The total chemical potential µ(x, t) will
thus be assumed to be derivable from the variational of the usual PFC free energy functional written
in terms of density, i.e., µ(x, t) = �F/�⇢(x, t)). Note: to ease up on the notation a bit in what follows,
the explicit writing of the time variable will be suppressed in expressions like ⇢(x, t), µ(x, t), etc.
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9.3.2 A constitutive equation for ⇢(x, t)

To proceed beyond Eq. (9.29), we require a constitutive equation that relates the local density field
⇢(x) to the local vacancy fraction  v(x) and the local deformation displacement ui(x), or strain uij(x).
We derived such a relationship for �⇢ in our mean-field treatment of solids, i.e., Eq. (5.10) in Section 5.
Here, we motivate an extension of Eq. (5.10) to the case of the fields.

We begin by splitting the local momentum density at a point r into two part as follows,

g = glattice + gvac = ⇢(x)
@u

@t
+ gvac (9.31)

where the first term gL = ⇢(x)@tu represents the momentum flux carried by the deformation of the
lattice transporting atoms past some observation surface (units kg/m2-s). The second term gvac is the
momentum carried across said [hypothetical] surface by the di↵usive transport (i.e., random hopping)
of vacancies. These two modes of atomic transport are illustread in Figure 9.1. Taking the divergence

Figure 9.1: Cartoon of atoms hoping across a hypothetical surface in a crystal. Purple arrows indicated
shifts in positions of atoms that are tranported by displacement of the lattice, but otherwise remain in
the same atomic planes. Orange arrows indicate atomic transport by a random hop from one atomic
plane (or lattice site) due to the processes of di↵usion, a thermally actvated process.

of both sides of Eq. (9.31) and using @⇢/@t = �r · g gives

@⇢

@t
= �r · gvac � �ij ri

✓
⇢
@uj

@t

◆
, (9.32)

It is instructive to taking the infinitesimal limit of Eq. (9.32), i.e. letting @⇢/@t! �⇢/�t and @uj/@t!
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�uj/�t, and then multiplying through by �t. This gives

�⇢ = ��tr · gvac � �ij ri (⇢ u̇j�t)

= ��tr · gvac � �ij ri (⇢uj)

= �⇢
vac � �ij ri (⇢uj) , (9.33)

where we have defined �⇢vac ⌘ ��tr · gvac, which we associate with the change of mass density due
to the change vacancy fraction at x. Comparing Eq. (9.33) to its mean field counterpart in Eq. (5.10)
�⇢ = ⇢� � �ij⇢riuj allows us to identify �⇢vac alternatively as

�⇢
vac(x) = ⇢(x) v(x) (9.34)

The above considerations then suggest the following generalization of Eq. (5.10) to the case of the
fields,

�⇢(x) = ⇢(x)� v(x)� �ijri (⇢(x)uj(x)) , (9.35)

where �ij is the Kronecker delta. It is also noted that the displacement uj ⌘ can be treated as
�ui relative to a reference undeformed state. As a result, to lowest order in the �⇢ and uj , the
term ri (⇢(x)uj) ⇡ ⇢(x)riuj , making the correspondence of Eq. (9.35) to its mean field counterpart
complete.

Returning to Eq. (9.29) and using Eq. (9.35) yields

�F
�uj(y)

=

Z ⇢
µ(x) +

1

2
|v|2

�⇢
��ij

@ [⇢ �(x� y)]

@xj

�
dx (9.36)

Integrating Eq. (9.36) by parts and dropping the O(vi vj) term (since we are considering linearized
hydrodynamics) gives 5 and substituting the result into Eq. (9.27) (after making the swap y ! x)
gives,

@
2
⇢

@t2
= r2 {⇢(x)µ(x)}+rirj�

diss
ij (9.37)

9.4 Dissipation tensor

Continuing on to a closed form of Eq. (9.37) further requires a phenomenology for the dissipative
component of the stress tensor. As with generic friction, dissipative forces in general act to dissipate
the momentum of a volume element non-reversibly. Two account for dissipation on two length scales,
we will split of dissipative stress tensor into two sources as follows,

rj�
diss
ij = rj�

visc
ij +rj�

drag
ij

(9.38)

Both components will depend on the local momentum density of a volume element, given by g =
�F/�v. The first term takes the standard form that relates stresses dissipated though gradients in the
momentum density, which leads to the usual viscosity-like stress dissipation on shorter waveleneths.
The second is one is more phenomenological Aristotelian drag force that becomes directly proportional
to the momentum density, and will be operational on longer wavelengths; the latter form will also
prove to be necessary to recover the Model B type limit of the modified PFC model at late times

5
It is noted that in typical physics form, we will treat �(x�y) as a proper function to facilitate operations, rather than

takin the more formal route of using limits of a distribution, which, while approved [somewhat more] by mathematicians,

would make the algebra look alot [more] like “a dog’s breakfast”.
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The first term of the dissipative stress tensor term in Eq. (9.38) is given explicitly by

rj�
visc
ij = Ljkrkrk

✓
�F
�vi

◆
= ⌫�jkrjrk gi = ⌫r2 g (9.39)

Taking the gradient of both sides of Eq. (9.42) and applying the mass conservation equation yields

rirj�
visc
ij = ⌫r2 (r · g) = �⌫r2

✓
@⇢

@t

◆
(9.40)

The second term of the dissipative stress tensor term in Eq. (9.38) is given explicitly by

rj�
drag
ij

= ⌘
�F
�vi

= ⌘ g (9.41)

Taking the gradient of both sides of Eq. (9.41) and once again applying the mass conservation equation
now yields

rirj�
drag
ij

= ⌘r · g = �⌘ @⇢
@t

(9.42)

As mentioned above, this term is necessary to recover the di↵usive model B type dynamics governing
di↵usive transport in the PFC model 6.

9.4.1 Modified PFC (MPFC) model and its simplifications

Substituting both dissipation terms in Eq. (9.42) and Eq. (9.41) back into Eq. (9.37) gives the following
PFC evolution equation for ⇢(x, t),

@
2
⇢

@t2
+ ⌘

�
1� �r2

� @⇢
@t

= r2 {⇢(x)µ(x)} = r2

⇢
⇢(x)

�F
�⇢(x, t)

�
(9.43)

where � = ⌫/⌘. Equation (9.43) is a closed equation that is a type of damped wave equation. It
describes the two-time-scale evolution of the density ⇢(x, t) in terms of total chemical potential, which
can be derived from any PFC functional in the literature (here have been many!).

It is noteworthy that the dissipation sources in Eq. (9.43) act on two length scales di↵erently.
the r2 multiplying the @⇢/@t term is fundamental in its origin and acts to dissipate energy on short
wavelengths. The dissipation term proportional to @⇢/@t is phenomenological and acts on longer
length scales. It is necessary to recover the Model B type dynamic of Eq. (9.22). Also, this type of
velocity-dependent drag is critical to provide dissipating forces on microstructures like dislocations
which glide as a speed set by a balance of the mechanical deformation forces and drag, which goes like
�rmdrag ⇠ velocity.

It is ine�cient to simulate Eq. (9.43) in Fourier space, which become ine�cient the way the density
is “sandwiched” between the two gradient operators. Two minimal models modifications exits, one
better than the other. The first simplification is is to remove ⇢(x, t) on the right hand side of Eq. (9.43)
out of the brackets, yielding

@
2
⇢

@t2
+ ⌘

�
1� �r2

� @⇢
@t
⇡ ⇢(x)r2

⇢
�F

�⇢(x, t)

�
(9.44)

6
It should be noted that rigorously, only the viscosity-type first term arises due to symmetry (i.e. translational

invariance) considerations in hydrodynamic treatments. However, it is straightforward to show that integrating a rv
type term over volume of an element and using the divergence theorem will yield a drag-like term on the element for the

case of laminar flow. Thus, we can consider Eq. (9.38) as explicitly breaking up the dissipation into a term that obeys

the local symmetries on small scales (i.e. the scale of periodic peaks in the case of a PFC model) and one that generates

drag on larger scales via Eq. (9.42), which is crucial for controlling “flow” of microstructures like dislocaitons and grain

boundaries.
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This may seem crude but it is recalled that on long wavelengths (where all PF-type models are supposed
to work well!) the density is smooth on long wavelengths and oscillates rapidly and periodically on
atomic scales (see the Section of amplitude equations in chapter 8 of Ref. [26]). Expanding out the
right hand side of Eq. (9.43) with the chain rule and using this smoothness property of the density
gives the right hand side of Eq. (9.44) as the leading order term that is manifest at large wavelengths.
The second simplification is is to replace ⇢(x, t) on the right hand side of Eq. (9.43) by the reference
⇢̄ around which the original free energy functional F is expanded. This gives

@
2
⇢

@t2
+ ⌘

�
1� �r2

� @⇢
@t
⇡ ⇢̄r2

⇢
�F

�⇢(x, t)

�
(9.45)

Equation (9.45) is very crude but still provides a minimal description of two-time scale dynamics in
PFC modelling. It has appeared first phenomenologically by Stefanovich et. al [31].
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