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Preface

The idea for this book grew out of a series of workshops that took place at McMaster University from
2002-2005 in which a couple of dozen researchers and students (coined the ”Canadian Network for Com-
putational Materials Science, CNCMS”) were invited to discuss their research and their visions for the
future of computational materials science. One serious concern that surfaced through discussions and the
meetings’ proceedings regarded the gaping hole that existed in the standard pedagogical literature for
teaching students –and professors– about computational and theoretical methods in phase field modeling.
Indeed, unlike many other fields of applied physics and theoretical materials science, there is a dearth
of easy-to-read books on phase field modeling that would allow students to come up to speed with the
details of this topic in a short period of time. After sitting on the fence for a while we decided to add
our contribution by writing an introductory text about phase field modeling.

The aim of this book is to provide a graduate level introduction of phase field modeling for students
in materials science who wish to delve deeper into the underlying physics of the theory. The book begins
with the basic principles of condensed matter physics to motivate and develop the phase field method.
This methodology is then used to model various classes of non-equilibrium phase transformations that
serve as paradigms of microstructure development in materials science phenomena. The workings of
the various phase field models studied are presented in sufficient detail for students to be able to follow
the reasoning and reproduce all calculations. The book also includes some basic numerical algorithms
–accompanied by corresponding Fortran codes on the Wiley website for this book– that students can use
as templates with which to practice and develop their own phase field codes. A basic undergraduate level
knowledge of statistical thermodynamics and phase transformations is assumed throughout this book.
Most long-winded mathematical derivations and numerical details that can serve as references but would
otherwise detract from the flow of the main theme of the text are relegated to appendices.

It should be specified at the outset that this book is not intended to be an exhaustive survey of all
the work conducted throughout the years with phase field modeling. There are plenty of reviews that
cover this angle and many of these works are cited herein. Instead, we focus on what we feel is missing
from much of the literature: a fast-track to understanding some of the ”dirty” details of deriving and
analyzing various phase field models, and their numerical implementation. That is precisely what we
have observed new students wishing to study phase field modeling are starving for as they get started in
their research. As such, this book is intended to be a kind of ”phase field modeling for dummies”, and so
while the number of topics is limited, as many of the details as possible are shown for those topics that
are covered.

The broad organization of the material in following chapters is as follows. The first half of the book
begins by establishing the basic phase field phenomenology, from it basic origins in mean field theory of
phase transformations, to its basic form now in common use as the base of most modern phase field models
used in computational materials science and engineering. Phase field theory is applied to several examples,
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with a special emphasis placed on the paradigms of solidification and solid state transformations. An
appendix is also dedicated to the important issue of mapping the phase field model onto specific sharp
interface limits. The Last two chapters of this book deal with the development of more complex class
of phase field models coined ”phase field crystal” models. These are are an extension of the original
phase field formalism that makes it possible to incorporate elastic and plastic effects along side the usual
kinetics that governing phase transformations. We will see that these models constitute a hybrid between
traditional phase field theory and atomistic dynamics. After motivating the derivation of phase field
crystal models from classical density functional theory, these models are then applied to various types
of phase transformation phenomena that inherently involve elastic and plastic effects. It is noted that
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Chapter 1

Introduction

1.1 The Role of Microstructure Materials Science

The properties of matter and, in more practical parlance, engineered materials involve a connection to
their underlying microstructure. For example, the crystal structure and impurity content of silicon will
determine its band structure and its subsequent quality of performance in modern electronics. Most large-
scale civil engineering applications demand high strength steels containing a mix of refined crystal grains
and a dispersion of hard and soft phases throughout their microstructure. For aerospace and automotive
applications, where weight to strength ratios are a paramount issue, lighter alloys are strengthened
by precipitating second-phase particles within the original grain structure. The combination of brain
boundaries, precipitated particles and the combination of soft and hard regions allow metals to be very
hard and still have room for ductile deformation. It is notable that the lengthening of span bridges in the
world can be directly linked to the development of perlitic steels. In general, the technological advance of
societies has often been linked to their ability to exploit and engineer new materials and their properties.

In most of the above examples, as well as a plethora of untold others, microstructures are developed
during the process of solidification, solid state precipitation and thermo-mechanical processing. All these
processes are governed by the fundamental physics of free boundary dynamics and non-equilibrium phase
transformation kinetics. For example, in solidification and re-crystallization –both of which serve as a
paradigms of a first order transformation– nucleation of crystal grains is followed by a competitive growth
of these grains under the drive to reduce the overall free energy –bulk and surface– of the system, limited,
however, in their kinetics by the diffusion of heat and mass. Thermodynamic driving forces can vary.
For example, solidification is driven by bulk free energy minimization, surface energy and anisotropy.
On the other hand, strain induced transformation, must also incorporate elastic effects. These can have
profound effects on the morphologies and distribution of, for example, second phase precipitates during
a heat treatment of an alloy.

The ability to model and predict materials properties and microstructure has greatly benefited from
the recent “explosion” of new theoretical and numerical tools. Modern parallel computing now allows
several billions atoms to be simulated for times on the scale of nanoseconds. On higher scales, various
continuum and sharp interface methods have made it possible to quantitatively model free surface ki-
netics responsible for microstructure formation. Each of these methodologies, however, comes with its
advantages and deficiencies.
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1.2 Free Boundary Problems and Microstructure Evolution

Solidification has typically served as a paradigm for many classes of non-equilibrium phase transformations
which govern the formation of complex microstructure during materials processign. The most commonly
recognized solidification microstructure is the tree-like dendrite patters (which comes from the Greek
word for tree, ”dendron”). The most popular example of a dendrite is a snowflake, which is a single
crystal of ice, which was solidified from water that falls through the sky. Figure (1.1) shows an image of
a brach of a snowflake in an organic material known an succinonitrile (SCN) solidifying from its melt.
This material is a favorite with researchers because it solidifies at room temperature and is transparent,
affording us a good look at the solidification process. It is also often referred to as a “metal analogue” as
it solidifies into a cubic crystal structure. Surprisingly the properties learned from this organic material
are essentially unchanged qualitatively in metals and their alloys. Patterns like the one in Fig. (1.1)

Figure 1.1: A snowflake of succinonitrile (SCN), an organic compound that solidified at room temperature.
The image shows the characteristic ”dendritic” tree-like pattern of the crystal, typical of crystal formation
in nearly all anisotropic solids. It is a ubiquitous shape depends on the physics of reaction-diffusion and
the properties of the surface energy between the solid and liquid. (Vincent Proton, Summer High School
Intern, McMaster University (2008).

are not limited to solidification. They are also emerge are also found in the solid state transformations.
Figure (1.2) shows dendrite patters that emerge when one solid phase emerges from and grows within
another. The business of microstructure modeling involves understanding the physics governing such
microstructure formation.

Solidification is at the heart of all metal casting technologies. Figure (1.3) shows a typical layout for
casting slabs of steel used in many industries. The basic idea is that a liquid metal alloy enters a region
like the one between the rollers in the figure. There the liquid is sprayed with water, which establishes a
cooling mechanism that extracts heat from the casting at some rate (Q̇). The liquid solidifies from the
outer surface inward. The rate at which heat is extracted –i.e. the cooling rate– is key in establishing
the morphology and scale of the solidification microstructure, as seen in the inset of Fig. (1.3). Typical
dendrite microstructures in many steel alloys resemble those shown in Fig. (1.4). In this situation the
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Figure 1.2: Left: solid state dendrites in an alloy of Copper (Cu) and Zinc (Zn). Right: Dendrite in a
Nickel-based super-alloy, a material commonly used in aerospace materials due to its very high strength.
Reprinted from [220] (left) and [102] (right)

Figure 1.3: Typical industrial layout for thin slab casting. Liquid is enters from top, is cooled by splashing
water and is directed –as it solidifies– at some speed (V ) to the right. Most steels will then be cut and
thermo-mechanically treated to improve their strength properties. In spite of the post solidification
treatment that the metal may receive, the so called ”as-cast” structure (inset) that is established initially
is always, to some extend, present in the final product.

3



Figure 1.4: Dendrite arrays in a steel alloy. Growth is from bottom left to top right in the left figure and
from left to right in the right figure. The figure on the right has been cooled much more rapidly than
that of the left. The main striations are known as primary dendrites. The budding branch-like structures
coming off of the primary dendrites are known as secondary arms or side-branches.

competitive growth and interaction of a very large number of dendrites means that only partial traces of
the traditional snow flake pattern survive. In fact, depending on the direction of heat extraction, cooling
rate and geometry of the cast, it is typical that only single ”arms” of the characteristic snow flake pattern
survive and grow. These form the branch-like striations in the figure.

The kinetics of microstructure formation can often -as in conventional solidification processes- mod-
elled assuming the interface in atomically sharp compared to any other dimension in the problem. Prac-
tically, this leads to a set of mathematical relations that describe the release and diffusion of heat, the
transport of impurities and the complex boundary conditions that govern the thermodynamics at the
interface. These mathematical relations in theory contain the physics that gives rise to the complex
structure shown in the above figures. As a concrete example, in the solidification of a pure material the
advance of the solidification front is limited by the diffusion of latent heat away from the solid-liquid in-
terface, and the ability of the interface to maintain two specific boundary conditions; flux of heat toward
one side of the interface is balanced by an equivalent flux away from the other side and the temperature at
the interface undergoes a curvature correction known as the Gibbs-Thomson condition. These conditions
are expressed mathematically as in the following sharp-interface model commonly known as the Stefan
Problem:

∂T

∂t
= ∇ ·

(
k

ρcp
∇T
)
≡ ∇ · (α∇T )

ρLfVn = ks∇T · ~n|sint − kL∇T · ~n|Lint

Tint = TM − 2

(
γTM
ρLf

)
κ− Vn

µ
(1.1)

where: T ≡ T (~x, t) denotes temperature, k thermal conductivity (which assumes values ks and kL in
the solid and liquid, respectively), ρ the density of the solid and liquid, cp the specific heat at constant
pressure, α the thermal diffusion coefficient, Lf the latent heat of fusion per mass for solidification, γ
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the solid-liquid interface energy, TM the melting temperature, κ the mean local solid-liquid interface
curvature 1, Vn the local normal velocity of the interface, µ the local atomic interface mobility. Finally,
the subscript ”int” refers to interface and the superscript ”s” and ”L” refer to evaluation at the interface
on the solid or liquid side, respectively

Like solidification, there are other diffusion limited phase transformations whose interface properties
can, on large enough length scales, be described by specific sharp interface kinetics. Most of them can
be described by sharp interface equations analogous to those in Eqs. (1.1). Such models –often referred
to as sharp interface models– operate on scales much larger than the solid-liquid interface width, itself of
atomic dimensions. As a result, they incorporate all information from the atomic scale through effective
constants such as the capillary length, which depend on surface energy, the kinetic attachment coefficient
and thermal of impurity diffusion coefficient.

1.3 Continuum Versus Sharp-Interface Models

A limitation encountered in modeling free boundary problems is that the appropriate sharp interface
model is often not known for many classes of phenomena. For example, the sharp interface model for
phase separation or particle coarsening, while easy to formulate nominally, is unknown for the case
when mobile dislocations and their effect of domain coarsening is included [155]. A similar situation is
encountered in the description of rapid solidification when solute trapping and drag are relevant. There
are several different sharp interface descriptions of this phenomenon, each differing in the way they treat
the phenomenological drag parameters and trapping coefficients and lateral diffusion along the interface.

Another difficulty associated with sharp interface models is that their numerical simulation of sharp
interface models also turns out to be extremely difficult. The most challenging aspect is the complex
interactions between topologically complex interfaces that undergo merging and pinch-off during the
course of a phase transformation. Such situations are often addressed by applying somewhat arbitrary
criteria for describing when interface merging or pinch-off occurs, and manually adjusting the interface
topology. It is noteworthy that numerical codes for sharp interface models are very lengthy and complex,
particularly in 3D.

A relatively new modeling paradigm on the scene of materials science and engineering is the so-called
phase field method. The technique has found increasing use by the materials community because of its
fundamental origins and because it avoids some of the problems associated with sharp interface models.
The phase field method introduces, along side the usual temperature field, an additional continuum field
coined the phase field or order parameter. This field assumes constant values in the bulk of each phase,
continuously interpolating between its bulk values across a thin boundary layer, which is used to describe
the interface between phases. From the perspective of condensed matter physics, the phase field may be
seen as describing the degree of crystallinity or atomic order or disorder in a phase. It can also be viewed
as providing a fundamental description of an atomically diffuse interface. As a mathematical tool, the
phase field can be seen as a tool that allows the interface to be smeared over a diffuse region for numerical
expedience.

Traditional phase field models are connected to thermodynamics by a phenomenological free energy
functional 2 written in terms of the phase field and other fields (temperature, concentration, strain, etc).

1The mean curvature in 3D is κ = (1/R1 + 1/R2)/2 where R1 and R2 are the local radii of curvature in the x and
y directions. In 2D the mean curvature reduces to 1/2R and so the factor of 2 disappears in the curvature term in the
Gibbs-Thomson condition.

2A “functional” is a function whose input is an entire function rather than a single number. As a one dimensional
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Through a dissipative minimization of this free energy, the dynamics of one or more order parameter, as
well as those of heat or mass transfer are governed by set of no non-linear partial differential equations.
Parameters of these dynamical equations of motion are tuned by association of the model –in the limit
of a very small interface– with the associated sharp interface equations.

As will be explored in this book, phase field models, besides their fundamental thermodynamic con-
nection are exceedingly simple to program. They often do not require much more than a simple so-called
Euler time marching algorithm on a uniform mesh (these will be examined later). For the more advanced
users, more sophisticated techniques such as adaptive mesh refinement (AMR) and other rapid simulation
schemes are also in abundance for free download and use these days.

The phase field methodology has become ubiquitous as of late and is gaining popularity as a method
of choice to model complex microstructures in solidification, precipitation and strain-induced transfor-
mations. More recently a new class of phase field models has also emerged, coined phase field crystal
models, which incorporate atomic scale elasticity alongside the usual phase transformation kinetics of
traditional phase field models. Phase field crystal models are appealing as they will be shown to arise
as special instances of classical density functional theory. This connection of phase field crystal models
and classical density functional theory provides insight about the derivation of the effective constants
appearing in phase field models from atomistic properties.

Of course there are no free lunches! While phase field models might offer a deeper connection to
fundamental thermodynamics than larger-scale engineering or sharp interface models, they come with
several severe problems that have traditionally stood in the way of making models amenable to quantita-
tive modeling of experimentally relevant situations. For example, the emergence of a mesoscopic interface
renders phase field equations very stiff. This requires multi-scale numerical methods to resolve both the
thin interfaces that are inherent in phase field models while at the same time capturing microstructures on
millimeter-centimeter scales. Moreover, the numerical time steps inherent in phase field theory –limited
by the interface kinetics– makes it impossible to model realistic time scale. As a result new mathematical
techniques –thin-interface asymptotic analysis methods– have to be developed that make it possible to
accelerate numerical time scales without compromising solution quality. Luckily advances on both these
fronts –and others– have recently become possible to overcome some of these challenges in selected prob-
lems. Understanding some of these methods and their application to the broader phase field methodology
will be one of the main focuses of the chapters that follow.

example, suppose a quantity f is dependent on a certain function of space φ(x). The quantify F =
∫
f (φ(x)) dx is then

dependent on entire function φ(x) and is said to be a functional of φ(x). The functional dependence of F on φ(x) will be
denoted by F [φ(x)]
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Chapter 2

Mean Field Theory of Phase
Transformations

The origins of the phase field methodology -the focus of this book- have been considerably influenced by
mean field theory of first and second order phase transformations. It is thus instructive to begin first
with a discussion of some simple phase transformations and their description via mean field theory. Using
this as a framework will better alloy the concept of an order parameter to be defined and generalized to
include spatial variations. This will thus set the stage for the later development of phase field models
of solidification and solid state transformation phenomena. Before proceeding, the reader should have a
basic background of statistical thermodynamics. For a quick review of, the reader is referred to one of
[22], [97], Ref. [45].

Common first order transformations include solidification of liquids and condensation of vapor. They
are defined by a release of latent heat and discontinuous first derivative of the free energy. Moreover,
just below a first order transformation, nucleation of the meta-stable phase is required to initiate the
transformation. Finally, in first order transformations, two phases can typically co-exist over a wide
range of temperatures, densities (pure materials) or impurity concentrations (alloys). In contrast, second
order transformations occur at well defined temperature, density or concentration. There is no release
of latent heat and the transformation begins spontaneously due to thermal fluctuations. A paradigm
example is phase separation of a binary mixture or spinodal decomposition in metal alloys. Another is
the spontaneous ferromagnetic magnetization of iron below its Currie temperature.

An important concept that is used again and again in the description of phase transformations is that
of the order parameter. This is a quantity that parameterizes the change of symmetry from the parent
(disordered) phase to the daughter (ordered) phase appearing after the transformation. For example,
a crystal phase has fewer rotational and translational symmetries compared to a liquid. The order
parameter typically takes on a finite value in the ordered state and vanishes in the disordered state. First
and second order phase transitions are distinguished by the way the order parameter appears below the
transition temperature. In a first order transformation, the order parameter of the ordered state emerges
discontinuously from that of the disordered phase, below the transformation temperature. In second order
transformation, the disordered state gives way continuously to two ordered phases with non-zero order
parameter. Another example of a change of symmetry characterized by changes in the order parameter
include the average magnetization. For some phase changes, like vapour → vapour + liquid, there is no
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change in the structural symmetry groups of the parent and daughter phases. In such case effective order
parameters can often be defined in terms of density differences relative to the parent phase.

Mean field theory of phase transformations ignores spatial fluctuations, which always exist due to local
molecular motion. The order parameter –treated as an average thermodynamic property of a phase– is
used to write the free energy of a system. Its subsequent thermodynamic properties can thus be deter-
mined. This approach works reasonably well in first order transformations, where fluctuations influence
only regions near nano-scale phase boundaries, even near the transition temperature. In contrast, second
order transformations fluctuations influence ordering over increasing length scales, particularly near a
critical point. For such problems, spatial fluctuations play a dominant role and mean field Landau free
energy functional must be augmented with terms describing spatial fluctuations. These are also written
in terms of gradients of the order parameter, which is in this case considered to be varying spatially on
scales over which spatial fluctuations occur.

This chapter begins by illustrating two phenomenological microscopic models that help motivate and
define the concept of an order parameter and mean field treatments of phase transformations.

2.1 Simple Lattice Models

2.1.1 Phase separation in a binary mixture

Consider a binary mixture of two components A and B. Imagine the domain on which the mixture is
broken into many small discrete volume elements labeled with the index i. Each element contains either
one A or one B atom. The total number of cells M equals the total number of atoms N , a definition valid
for an incompressible fluid mixture. For each cell 1 < i < N , a state variable ni is defined, which takes on
ni = 0 if a volume elements is occupied by an A atom and ni = 1 when it is occupied by a B atom. The
variable ni thus measures the local concentration of B atoms in each cell. The total number of unique
states of the system is given by 2N , where each configurational state is denoted by the notation {ni}.
Assuming that each particle interacts with ν of its neighbors, the total interaction energy of a particular
configuration of the binary mixture is given by

E[{ni}] = −1

2

N∑
i=1

ν∑
j=1

{εAA(1− ni)(1− nj) + εAB(1− ni)nj + εAB(1− nj)ni + εBBninj}, (2.1)

where εAA, εBB and εAB are energy scales. This expression can be simplified by interchanging the i and
j subscripts and noting that ninj = ni − ni(1− nj), which gives

E[{ni}] =
ε

2

N∑
i=1

ν∑
j=1

ni(1− nj) + b

N∑
i

ni −
NνεAA

2
(2.2)

where ε = εAA + εBB − 2εAB and b = ν
2 (εAA − εBB).

The thermodynamics of this simple system is described by the grand potential [22]

Ω(µ,N, T ) = F (N, 〈NB〉, T )− µ < NB > (2.3)

where µ is the chemical potential of the system and

< NB >≡ 〈
N∑
i=1

ni〉 (2.4)
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is the average concentration of B particles. The free energy per particle can be expressed as

f ≡ F (φ,N, T )

N
=

Ω(µ,N, T )

N
+ µφ (2.5)

where φ is the order parameter, defined by

φ =
1

N
〈
N∑
i=1

ni〉 ≡< ni > (2.6)

Equation (2.5) makes explicit the dependencies of the free energy density on the chemical potential and
the order parameter of the system, which in this case is the average concentration of B atoms.

From the principles of statistical mechanics, the free energy f in Equation (2.5) can be connected
to the interaction energy in Eq. (2.1) via the grand partition function Ξ, which determines the grand
potential Ω according to

Ω = −kBT ln Ξ (2.7)

where kB is the Boltzmann constant and

Ξ =

N∏
i=1

∑
ni=0,1

e−β(E[{ni}]−µNB) (2.8)

where β ≡ 1/kBT and NB =
∑N
i=1 ni. Equation (2.8) represents a configurational sum of the Boltzmann

factor over all 2N configurations of the binary mixture. The order parameter in Eq. (2.6) can be evaluated
directly from the grand partition function Eq. (2.8), or from Eq. (2.5), according to

φ = − 1

N

∂Ω

∂µ

∣∣∣∣
N,T

(2.9)

The configurational sum in Eq. (2.8) cannot be performed for most complex interacting systems
including the simple binary mixture model presented here. Nevertheless, a considerable insight into the
thermodynamics of this lattice model can be gleaned from making some simplification on the interaction
terms. Namely, we invoke mean field approximation, which assumes that the argument of the Boltzmann
factor in the configurational sum of Ξ can be replaced by its mean or equilibrium value. The implication
of this assumption is that the main contribution to Ξ comes from particle configurations close to those
that minimize the argument of the Boltzmann factor in Ξ. Thus, in mean field theory the partition
function becomes,

Ξ ≈
N∏
i=1

∑
ni=0,1

e−β 〈E[{ni}]〉+µβ〈NB〉

=
N !

〈NB〉!(N − 〈NB〉)!
e−β 〈E[{ni}]〉+µβ〈NB〉 (2.10)

Accordingly, the grand potential in mean field theory becomes

Ω = −kBT ln Ξ

≈ −kBT ln

(
N !

〈NB〉!(N − 〈NB〉)!

)
+ 〈E[{ni}]〉 − µ〈NB〉 (2.11)
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Figure 2.1: Mean field free energy of ideal binary alloy for temperatures ranging from above to below the
critical temperature.

where Sterling’s approximation was used above. The mean energy E[{ni}] per particle can be written as

〈E[{ni}]〉
N

=
ε

2N

〈 N∑
i=1

ν∑
j=1

ni(1− nj)
〉

+
b

N
〈
N∑
i=1

ni〉 −
νεAA

2

=
εν

2
φ(1− φ) + bφ− νεAA

2
(2.12)

This expression makes it possible to finally write the mean field free energy f in Eq. (2.5) for the binary
mixture in terms of the order parameter,

f =
εν

2
φ(1− φ) + bφ− νεAA

2
+ kBT{φ lnφ+ (1− φ) ln(1− φ)} (2.13)

Figure (2.1) shows the free energy in Eq. (2.13) for several temperatures above and below a critical
temperature (Tc), below which one minimum value in concentration continuously gives way to two. It
is assumed in this figure that εAA = εBB and ν = 4, i.e. the alloy is two dimensional. The free energy
wells in the figure correspond to free energies of individual phases that can form in this alloy. As a
note in passing at this stage in the book, it is recalled that the total number of impurity (B) atoms is
conserved. As a result, the order parameter in this problem is referred to as conserved. It will be seen
that this designation has important implications on the way we determine the equilium states of this
order parameter, and on the type of dynamical equations that can be written for the spatial evolution of
φ (or other conserved order parameters).

10



Below the critical temperature, the form of the free energy in Fig. (2.1) allows for the possibility
of two-phase coexistence. Thermodynamics dictates that the equilibrium states of concentration of two
coexisting phases in a system can be sought by equating their grand potential density (i.e. they exist
at the same pressure) and their chemical potential (an intensive variable that sets the number of solute
atoms in each phase) [182, 134]. This amounts to solving the system of equations

f(φeq
1 )− µeq φ

eq
1 = f(φeq

2 )− µeq φ
eq
2

∂f

∂φ

∣∣∣∣
φeq
1

=
∂f

∂φ

∣∣∣∣
φeq
1

= µeq, (2.14)

where φeq
1 and φeq

2 correspond to the equilibrium concentrations of two phases, respectively, and µeq is
the equilibrium chemical potential of the alloy. The solutions of Eqs. (2.14) graphically represent a line
between between ((φeq

1 , f(φeq
1 )) and (φeq

2 , f(φeq
2 )) that forms a common tangent to both free energy wells

(or the regions of positive curvature of f(φ)), the slope of which is the chemical potential µeq. It is clear
from the form of Fig. (2.1) that the solutions of Eqs. (2.14) are equivalent to solving

µeq =
∂f

∂φ

∣∣∣∣
φeq
1 ,φ

eq
2

= 0 (2.15)

Substituting Eq. (2.13) into Eq. (2.15) gives the transcendental equation

φeq − 1

2
=

1

2
tanh

(
εν

2kBT

(
φeq − 1

2

))
(2.16)

which yields up to two solutions (φeq = φeq
1 , φ

eq
2 ) as a function of T . Non-zero solutions of Eq. (2.16) exist

only for T < Tc ≡ εν/4kB , which defines the critical temperature for this alloy. This form of the free
energy is such that below a critical temperature two states emerge continuously from one. This means
that at a temperature arbitrarily close to (and below) Tc, the two stable states φeq are arbitrarily close
to the value φeq = 0 above Tc. This type of behaviour is typical of a second order phase transformation.

2.1.2 Ising Model of Magnetism

A second microscopic system that can described in terms of a well defined order parameter is a collection
of magnetic spins in an external magnetic field. Consider a domain of atoms, each of which carries a
magnetic spin si = ±1, i.e. the atoms’ magnetic moment points up or down. The energy of this system
of spins is given by

E{si} = −
N∑
i=1

ν∑
j=1

Jsisj −B
N∑
i=1

si (2.17)

where ν represents the nearest neightbours of each spin. The first term of Eq. (2.17) sums up the
interaction energies of each spin (”i”) with all other spins (”j”). The second term adds the energy of
interaction of each spin with an externally imposed magnetic field. In this system the order parameter is
defined as

φ =
1

N
〈
N∑
i=1

si〉 ≡ 〈si〉 (2.18)
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which represents the average magnetization of the system. Unlike the case of the binary alloy where the
average concentration of B atoms relative to the total number of atoms in the system was conserved 1

the average magnetization is not a conserved quantity.
The statistical thermodynamics of this system can be considered via the canonical partition function

for an N-spin system (since the number of spins is assumed not to change), given by

Q =

N∏
i=1

∑
si=−1,1

e−βE(s1,s2,s3,···,sN ) (2.19)

The partition function can be used to calculate the free energy per spin through the equation

f = −kBT
N

lnQ (2.20)

From Eqs. (2.19) and (2.20) the order parameter defined by Eq. (2.18) can be evaluated as

φ =
1

Q

N∏
i=1

∑
s=−1,1

(
1

N

N∑
i=1

si

)
e
−β
(
−B
∑N

i=1
si− J

∑N

i=1

∑ν

j=1
sisj
)

=
∂
[
kBT
N lnQ

]
∂B

= − ∂f
∂B

(2.21)

We will return to this equation shortly.
Considering, first, the order parameter of the system for the simple case where the interaction strength

J = 0, i.e. where the spins do not interact. This situation describes the case of a paramagnet, which
occurs at high temperatures. In this case,

Q =

N∏
i=1

∑
si=−1,1

e
−β
(
−B
∑N

i=1
Si
)

=

N∏
i=1

(
2
eβB + e−βB

2

)
= [2 cosh (βB)]

N
(2.22)

Substituting Eq. (2.22) into Eq. (2.20) gives

f = −kBT
N

lnQ

= −kBT
(

ln

[
cosh

(
B

kBT

)]
+ ln 2

)
(2.23)

1Note that the use in the binary alloy example of the grand canonical ensemble, where particle number varies, was done
for convenience. We would have obtained the same results if we used the canonical ensemble where particle number remains
fixed.
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Figure 2.2: The order parameter of a paramagnetic system, in which the spins are assumed to interact
with an external magnetic field but not with each other.

Substituting Eq. (2.23) into the definition of the order parameter Eq. (2.21) gives,

φ = − ∂f
∂B

= tanh

(
B

kBT

)
(2.24)

The order parameter defined by Eq. (2.24) is shown in Fig. (2.2). Not surprisingly, it follows the external
magnetic field B, since there are no spin-spin interactions.

The more complex case when spins are allowed to interact leads to ferromagnetism below a critical
temperature Tc. This phenomenon can occur in the absence of an external magnetic field. To study this
phenomenon, it is necessary to consider, once again, a mean field approximation, since evaluating the
partition function Eq. (2.19) with J 6= 0 is not possible analytically. The mean field approximation in
this case requires that we make the following replacement in the interaction energy in Eq. (2.17),

N∑
i=1

N∑
j=1

Jsisj →
N∑
i=1

ν∑
j=1

Jsi〈sj〉 = νJφ

N∑
i=1

si (2.25)

This corresponds to replacing the interaction of each spin (i) with all of its neighbours (j) by the inter-
action of each spin (i) with the mean field magnetization arising from ν neighbours. Doing so allows us
to write the partition function as

Q =

N∏
i=1

∑
si=−1,1

e
−β
(
−B
∑N

i=1
Si−Jνφ

∑N

i=1
Si
)

= [2 cosh (β{B + Jνφ})]N , (2.26)

which yields, after application of Eq. 2.20 and then Eq. (2.21),

φ = tanh

(
B + Jνφ

kBT

)
(2.27)

Figure 2.3 illustrates the graphical solution of Eq. 2.27. The transcendental Eq. (2.27) admits solutions
even when B = 0, which corresponds to the case of spontaneous magnetization. Specifically, φ = 0
for T > Tc ≡ νJ/kB , since the identity line y = φ will not intersect the function y = tanh(Jν/kBT )
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Figure 2.3: Graphical solution of the order parameter of a ferromagnetic system, in which the spins
interact with an external magnetic field and with each other. The order parameter is the point where
the straight line crosses the hyperbolic tangent function.

anywhere than φ = 0 (assuming here B = 0). Expanding the hyperbolic tangent to third order gives an
approximate solution of the order parameter (i.e. the magnetization) at the minima of the mean field
free energy,

φ ≈ ±[3(1− T/Tc)]1/2(T/Tc), T < Tc (2.28)

The non-zero equilibrium magnetization states of Eq. (2.28) below Tc go continuously to φ = 0, the
temperature state, as the critical temperature is approached, which implies a second order phase transition
at Tc when B = 0.

It is interesting to substitute Eq. (2.26) into Eq. (2.20) and expand the result to fourth order in φ.
This yields

f(T )

kBT
= − ln (2)− 1

2

(
Jνφ

kBT

)2

+
1

12

(
Jνφ

kBT

)4

, (2.29)

Equation (2.29) is subtracted from the reference free energy of the disordered state just above the critical
temperature,

f(T+
c )

kBTc
≈ − ln (2)− 1

2

(
Jνφ

kBTc

)2

(2.30)

Close to Tc the free energy difference ∆f ≡ f(T )− f(T+
c ) becomes

∆f(T )

kBTc
=

(
1− T

Tc

)
ln (2) +

1

2

(
T

Tc
− 1

)(
Jνφ

kBTc

)2

+
1

12

(
Jνφ

kBTc

)4

, (2.31)

It is straightforward to check that Eq. (2.31) indeed has one minimum state φ = 0 for T = Tc and two
(Eq. (2.28)) for T < Tc. Such a polynomial expansion of the fee energy in terms of the order parameter
φ is an example of Landau free energy functional, which is the focus of the following section.
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2.2 Introduction to Landau Theory

2.2.1 Order parameters and phase transformations

Traditional thermodynamics uses bulk variable such as pressure, volume, average density, internal energy,
etc to describe the state of a system during phase transformations. Condensed phases often also display
changes in positional and or rotational order during a phase transition. In the examples previously
considered, for instance, the second order phase changes represented a change in magnetic order or
sub-lattice ordering of impurity atoms (i.e. concentration).

Ordered phases are often distinguished from disordered phases by a decreased number of geometric
symmetries. For example, a liquid or gas is disordered in the sense that they are symmetric with respect
to all rotations and translations in space. A solid however, is only symmetric with respect to a limited
number of rotations or translations in space. In a ferro-magnet, the disordered phase are symmetric with
respect to all rotations and translations, while the ordered phases are not. The Landau theory of phase
transformations treats the order parameter (denoted φ in the previous examples of this chapter) as a
state variable, used to distinguish between ordered and disordered phases. It is customary to define the
disordered state as φ = 0 while the ordered states satisfy φ 6= 0.

Some transformations occur between states that exhibit the same geometric symmetries. An example
is a liquid gas transition, or a transition such as the binary alloy considered above, where only the sub-
lattice concentrations change in the solid but not the geometrical state of the phases. In such cases it
may still be possible to define an order parameter in terms of other thermodynamic variables relevant to
the phase transformation. For example, the change of order in a liquid-gas transition can be described
using the density difference between the two phases. This definition can, for example, makes it possible
to maintain the definition of the ”disordered” phase (i.e. that above the critical point) as φ = 0.

When a disordered state gives rise to an ordered state that exhibits less symmetries than the Hamil-
tonian of the system, this is referred to as a broken symmetry. In plain English, what this means loosely
speaking is that the Hamiltonian, which exhibits a certain number of symmetries can, mathematically,
give rise to phases (states) that exhibit an equal number of symmetries above some temperature and
phases that exhibit fewer symmetries below that temperature.

The order parameter φ of a phase can be interpreted as a non-zero average of a local order parameter
field Φ(~r), which exhibits spatial variation. The ”bulk” order parameter of the form discussed in the above
examples can thus be thought of as the spatial average of the local order parameter, i.e. φ =< Φ(~r) >,
averaged over the phase. Throughout a system undergoing a phase transformation, significant spatial
variations of Φ(~r) occur on a length scale often characterized by a so-called correlation length, denoted
here by ξ. The correlation length sets the scale over which the order changes from one phase to another. It
is typically defined in the context of second order phase transformations (e.g. phase separation in oil and
water), where ξ sets the scale of growing compositional domains. Although less rigorous, the definition of
ξ can also be adapted to describe the length scale of interfaces in first order phase transformations, (e.g.
solidification). The correlation length is assumed to be many times larger than the lattice constant of a
solid but small enough to be able to describe the spatial variations characterizing a particular pattern of
a system during a phase transformation.

The above discussion suggests that it is possible to characterize the state of a system in terms of
the configurations of Φ(~r), since each state of the system corresponds to a state of Φ(~r). As a result,
if it is possible to parameterize a quantity locally in terms of Φ(~r), its thermodynamic value can be in
principle calculated in terms of configurational sums over the states of the order parameter field Φ(~r).
Phase coexistence is then described by a bulk free energy whose minimization gives the possible values
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of the mean order parameter φ =< Φ(~r) > in each phase. This topic will be examined in this chapter.
The order of a phase transformation can be linked to the possible values of the average order parameter

φ can take. For example, a continuous change from φ = 0 above a certain critical temperature (Tc) to
multiple values of φ 6= 0 below a Tc denotes a second order transformation. Other signatures of a second
order transformation include a jump in the 2nd derivatives of usual thermodynamic potentials and a
spontaneous change of phase not requiring nucleation and not accompanied by a release of latent heat.
Also, second order transformations typically preserve the geometrical symmetries between disordered and
ordered phases.

A discontinuous change in the possible states of φ is the hallmark of a first order phase transition.
Discontinuous change in φ means that φ = 0 above a transition temperature Tm

2 gives rise to a discrete
jump in φ below Tm, the magnitude of which does not go to zero continuously at T → Tm. Other
signatures of a first order transformation include a jump in the first derivatives of thermodynamic poten-
tials. First order transformations that occur between phase of the same symmetry usually terminate at
a critical point, where a second order transformation occurs. First order transformations between phases
of different geometrical symmetries (the more common cases in most materials) do not terminate at a
critical point.

2.2.2 The Landau free energy functional

An elegant approach to illustrate Landau mean field theory, which is followed here to motivate the
beginning of this section, is that used in Ref. [22]. This begins by re-grouping the configurational sum
in the partition function into realizations of the order parameter that yield a specific spatial average
< Φ(~r) >≡ φ. Doing so, a generalized partition function is defined by

Q(T ) =

∫ ∞
−∞

dφΩ(φ) e−{E(φ)−BV φ} (2.32)

where Ω(φ) in Eq. (2.32) is the density of states (i.e. configurations) of the system corresponding to
φ (for simplicity only the simple case of a scalar order parameter field will be considered). The order
parameter is now assumed to be defined via a volume average, where V is the volume of the system. The
variable B plays the role of an ordering field in terms of which the order parameter can be defined from
the partition function. It is an external magnetic field in the case of an Ising ferromagnet, while in the
case of a binary alloy B is the chemical potential. The probability density of a system having an order
parameter φ is

P (φ) =
1

Q(T )
e−{F̂ (φ)−BV φ} (2.33)

where F̂ (φ) = E(φ) − TS(φ) is called the Landau free energy. Here S(φ) = kB ln (Ω(φ)) and E(φ) is
the internal energy of the system. For a conserved order parameter, when B corresponds to a chemical
potential, the Landau free energy corresponds to the grand potential energy. When the order parameter
is coupled to an external field via B, the free energy is given by F (φ) = F̂ (φ) − BV φ. As discussed
previously, the free energy density (or the grand potential density ω) of the system is connected to the
generalized partition function by

f = −kBT
V

lnQ(T ) (2.34)

2Note that this is not referred as a ”critical” temperature for first order transformations
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Equations (2.33) and (2.34) can be used to compute order parameter φ according to

φ̄ ≡ 〈φ〉 =

∫ ∞
−∞

φP (φ)dφ =
∂
[
kBT
V lnQ(T )

]
∂B

= − ∂f
∂B

(2.35)

The premise of Landau theory is to evaluate the partition function in Eq. (2.33) around the extremum
of the Boltzmann factor. This leads to the well-known extremum conditions

∂

∂φ

(
F̂ (φ)−BV φ

)∣∣∣∣
φ̄

= 0

∂2

∂φ2

(
F̂ (φ)−BV φ

)∣∣∣∣
φ̄

> 0 (2.36)

the solutions of which define the mean order parameter φ̄, and in terms of which the “generalized”
equilibrium grand potential is defined as

ω̂ =
F̂ (φ̄)

V
−Bφ̄ ≡ f̂(φ̄)−Bφ̄ (2.37)

where f̂(φ̄) is the Landau free energy densty. It is emphasized that for the case of a conserved order

parameter, B is a chemical potential (µ), ω̂ is actually the grand potential density (ω) and f̂ is the
Gibbs free energy density (f). For a non-conserved order parameter in an external field B, ω̂ is actually
the Gibbs free energy density. It should also be emphasized that the Landau mean field theory entirely
neglects temporal and spatial fluctuations and evaluates thermodynamic quantities at the most probable
homogeneous state of the order parameter, φ̄.

The next steps in mean field theory involve the construction of the Landau field free energy density
f̂(φ) ≡ F̂ (φ)/V . Recalling that the mean value of φ vanishes in the disordered state (i.e. φ = φ̄ = 0),

and considering second order phase transitions in the vicinity of the critical point, f̂(φ) is assumed to be
expressible in a series expansion of the form

f̂(φ) = f̂(T, φ = 0) +

M∑
n=2

an(T )

n
φn (2.38)

The coefficients of Eq. (2.38) depend on temperature as well as other thermodynamic variables.
Strictly speaking, Eq. (2.38) holds only for continuous changes in in φ as T changes, which happen

for second order phase changes. However, as a phenomenology, the polynomial will later also be used to
”fit” polynomials that describe discontinuous changes in φ as T changes. In what follows, the free energy
in Eq. (2.38) will be tailored to several practical and pedagogical phase transformation phenomena. For

convenience, the hat notation will be dropped from the Landau free energy density f̂ .

2.2.3 Phase transitions with a symmetric phase diagram

It is instructive to use Eq. (2.38) to construct a Landau free energy expansion corresponding to the
simple binary mixture model and the ferro-magnetic Ising model, which were examined at the beginning
of this chapter. In the case of magnetism, symmetry considerations can be used to guide the choice of
coefficients. Specifically, the fact that turning a magnet 180 degrees does not change its thermodynamic
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state internally implies that the ”upward” and ”downward’” pointing states (below Tc) are energetically
equivalent. Similarly, in the simple binary model with a symmetric phase diagram the free energy is
symmetric in the two states on either side of the spinodal concentration at φ = 1/2. Moreover, in both
cases above the critical temperature, there should only be one globally stable, disordered (φ = 0) state.

The above considerations on symmetry imply that for both these simple systems, only even powers
in the expansion of the Landau free energy density in Eq. (2.38) need to be retained, leading to

f(φ) = a(T ) +
a2(T )

2
φ2 +

a4(T )

4
φ4 +O(φ6) (2.39)

The first of the extremization conditions in Eqs. (2.36) implies minimizing Eq. (2.39) with respect to the
order parameter (B = 0 for the symmetric alloy or ferromagnet). This gives

∂f

∂φ
= 0 =⇒ φ =

(
0,±

√
−a2

a4

)
(2.40)

For the first root, φ = 0, to be the only root above the critical temperature, both a2(T ) > 0 and
a4(T ) > 0 (T > Tc). For the non-zero roots of Eq. (2.40) , which emerge below the critical temperature,
it is necessary that a2(T ) < 0 while a4(T ) > 0 (T < Tc). Assuming that a2 changes sign continuously
across the critical temperature, it is reasonable to expand it to first order in a taylor series about T = Tc
according to a2(T ) ≈ ao2(T − Tc). Meanwhile a4(T ) must be of the form a4(T ) ≈ ao4 + bo4(T − Tc) + · · ·,
where ao2, ao4 and bo4 are positive constants. Thus, close to and below Tc, mean-field theory predicts two
minimum (i.e. stable) order parameter states given by

φ ≈ ±

√
ao2
ao4

(Tc − T ), T < Tc (2.41)

Note that as T → Tc Eq .(2.41) continuously approaches φ = 0.

Figure (2.4a) shows the energy landscape of Eq. (2.39), revealing the existence of one stable state
above Tc (φ = 0) and two below Tc. The figure shows that the disordered, φ = 0, phase gives way to
two minima, i.e. stable, states below T = Tc. Figure (2.4b) shows the corresponding phase diagram of
coexisting minima of f(φ) in (T, φ) space. The dashed line indicates the so-called spinodal line defined
by the locus of points where ∂2f/∂φ2 = 0. It will be shown in section (4.6), when dynamics is examined,
that an initial state with φ = φo quenched below the spinodal line becomes linearly unstable to thermal
fluctuations and spontaneously decomposes into the two stable phases whose order parameter is given
by Eq. (2.41). This is referred to as spinodal decomposition. A high temperature phase corresponding
φo = 0 becomes unstable to fluctuation for any temperature T < Tc. where Tc is the highest co-existence
temperature, referred to as a critical or spinodal temperature. Critical fluctuations in φ grow continuously
from to their initial value toward their asymptotic values on the phase diagram, while the domain size
of the two emerging phases become divergent in time (for an infinite size system). This is an example
of a second order phase transformation. When an initial phase with φo 6= 0 is quenched below the two-
state co-exitence but above the spinodal line, is linearly stable to fluctuations and requires a threshold
activation energy (i.e. nucleation) to begin the phase separation process. In this case there is an abrupt
change in the order parameter to the value of the nucleated phase. This is an example of a first order
transformation. It should also be noted that phase diagrams such as Fig. (2.4), terminating in a critical
point describes phase transitions between two phases of the same geometric symmetry.
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Figure 2.4: (a)Landau free energy of a simple binary mixture or Ising model. Two stable phases arise
continuously from one for T < Tc. (b) Corresponding two-phase co-existence phase diagram for T < Tc.
The spinodal line is indicated in grey dashed line.

2.2.4 Phase transitions with a non-symmetric phase diagram

It is possible to represent asymmetry in a phase diagram containing a critical point by adding odd powers
to the free energy expansion. An example of this is in a gas-liquid transition of a pure material. It is
convenient to define, in this case, the order parameter to be the density difference φ = ρ− ρc, where ρc
is the density where the system can undergo a second order phase transition at a critical temperature
T = Tc. It turns out that the asymmetry can be addressed by retaining at least one third order term in
the Landau free energy density expansion of Eq. (2.38),

f(φ, T ) = ao(Tc) +
a2(T )

2
φ2 +

a3(T )

3
φ3 +

a4(T )

4
φ4 +O(φ6) (2.42)

The choice of parameters can be ”back-engineered” to obtain an appropriate phase diagram. It is once
again assumed that a4(T ) > 0 for all temperatures in the neighborhood of the transition, which is still
second order for the gas-liquid transition in the vicinity of the critical point.
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Since, here, the order parameter represent density, the thermodynamics of this system can be described
by the grand potential density. From Eq (2.37), B is found by noting that

∂ω

∂φ
= 0→ B =

∂f

∂φ
= µ (2.43)

where µ is the chemical potential. According to the Gibb’s phase rule, the equilibrium properties of
two-phase coexistence in a single component material are uniquely determined at a given temperature
T . In this case, these correspond to the relative density of the gas phase (φg(T )), the liquid phase
(φL(T )) and the corresponding chemical potential (µ(T )). Since at the critical temperature T = Tc,
µ(T ) = µ(Tc) ≡ µc, we will reference the grand potential from its value at T = Tc, thus working with the
relative grand potential of the form

∆ω(T, µ) = ∆f(φ, T )−∆µ(T )φ (2.44)

where ∆µ = µ − µ(Tc). It is noted that ∆ω(T, µ) vanishes as T → Tc since φ → 0 at the critical point,
making f → a0(Tc) in Eq. (2.42).

The properties of a2, a3, a4 can be found by applying the extremum conditions in Eqs. (2.36) to
Eq. (2.44) very close to the critical point, where it is assumed that ∆µ ≈ 0 to lowest order in T − Tc (to
be confirmed below). The becomes the same as applying the extremum conditions to f(φ) (Eq. (2.42)),
which gives

φ(a2 + a3φ+ a4φ
2) = 0

a2 + 2a3φ+ 3a4φ
2 > 0 (2.45)

The disordered phase is stable for T > Tc for a2(T ) > 0. Conversely for a a continuous transition (a
second order transformation) it is required that the three roots (i.e. states) of the cubic polynomial go
to one as T → Tc from below. This can be achieved by demanding that both a2(T ) → 0 ad a3(T ) → 0
as T → Tc, and that they both become negative for T < Tc. Once again, it is sufficient for a4(T ) to by
positive and nearly constant in the neighbourghood of T = Tc. The lowest order temperature expansions
of these constants that satisfies these conditions is given by

a2 = ao2(T − Tc)
a3 = ao3(T − Tc)
a4 = a4(Tc) (2.46)

Since here φ is a conserved quantity, below the transition temperature, there can exist two stable
states whose grand potential is equal for both the liquid and gas phases. The density of these two sates,
however, will in general not be symmetrically positioned about ρc. The trial form of the grand potential
satisfying these assumptions is

∆ω(φ, T, µ) =
D(T )

4
(φ− φL)2(φ− φg)2 (2.47)

Comparing Eq. (2.47) to Eq. (2.44), where the free energy is expanded according to Eq. (2.42), gives

D(T ) = a4(Tc)

20



1

2
(φL(T ) + φg(T )) = − a3(T )

3a4(T )

(φL(T )− φg(T ))2 = −4a2(T )

a4(T )
+

4a2
3(T )

3a2
4(T )

(2.48)

from which the liquid-gas order parameters are determined to be, to lowest order in T − Tc,

φL = −a
o
3(T − Tc)
3a4(Tc)

+

√
−ao2(T − Tc)

a4(Tc)

φg = −a
o
3(T − Tc)
3a4(Tc)

−

√
−ao2(T − Tc)

a4(Tc)
(2.49)

Once again, one minimum density is approached continuously as T → Tc from below. It is also seen that
the chemical potential, given by

∆µ(T ) =
a4(T )

2
(φL(T ) + φg(T )))φL(T )φg(T ) ∼ O(T − Tc)2 (2.50)

2.2.5 First order transition without a critical point

First order transitions typically occur between phases of different geometric symmetry. As a result the
phase diagram of a first order transition does terminate at a critical point, i.e. with the two co-existing
phases merge into one. The simplest way to break this symmetry is by adding cubic term of negative
sign to the Landau free energy density expansion of Eq. (2.38),

f(φ, T ) = a0(T ) + a2(T − Tu)
φ2

2
− a3

φ3

3
+ u

φ4

4
(2.51)

where a2, a3 and u are positive constants and Tu is a reference temperature different from a critical point.
This free energy exhibits a one global minimum at high temperature, two equal minima at transition
temperature T = Tm ≡ Tu + 2a2

2/9a3u and one global minimum, and a meta-stable minimum below Tm.
The free energy landscape f(φ, T ) for this case is shown in Fig. (2.5).

Above the transition temperature the free energy of the high symmetry phase (φh = 0) is a global
minimum –although it is evident that a second meta-stable low symmetry phase, φL > 0, emerges even
above Tm. Exactly at the transition temperature,

f(φh, Tm) = f(φL, Tm) (2.52)

Note that the minimum corresponding to φL (for T < Tm) does not emerge continuously from φh as in a
second order transition. Instead it emerges as a global minimum at T = Tm discontinuously, that is, at
discrete distance from φh.

Once again the second derivative of the bulk free energy, f
′′ ≡ ∂2f/∂φ2, plays an important role in

determining the stability or meta-stability of a phase. If the high temperature minimum state φh (left
well in Fig. (2.5) ) is cooled to a temperature sufficiently below Tm, where f

′′
< 0, this phase (i.e. the

initial phase φh) will be linearly unstable to all fluctuations, and decompose into the globally more stable
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Figure 2.5: Landau free energy for a first order transformation. The double welled curve with a cubic
term in φ. One global minimum arises when the coefficient of the square term in fbulk(φ, T ) is positive.
Below the melting temperature this phase becomes meta-stable and a new globally stable state of φ
emerges.

state (right well in Fig. (2.5)). For temperature just below Tm, f
′′
> 0, and the initial high temperature

phase will be metastable, implying that it will not be linearly unstable to all fluctuations. As a result
large enough thermal fluctuations and nucleation are required to initiate the transition into the globally
stable state. These considerations will be made more concrete in section (4.7) when the fluctuations and
the stability of order parameters is discussed.
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Chapter 3

Spatial Variations and Interfaces

Thus far only mean field free energies have been discussed. These describe only the bulk properties of
the phases of a material. Only bulk thermodynamics can be considered with this type of free energy,
which implies, among other things, that phases are infinite in extent and uniform. No consideration has
been given to finiteness of phase and, more importantly, multiple phase and the interfaces separating
them. As has been mentioned several times already, interfaces, their migration and interaction are
perhaps the most important features governing the formation of microstructure in metals (and indeed
most materials). This section incorporates interfacial energy into the mean field free energy, resulting
in a free energy functional –coined the Ginzburg-Landau or Cahn-Hilliard [41] free energy functional.
This is an expression that is dependent on the entire spatial configuration of a spatially dependent order
parameter field. This modification allows the study of spatio-temporal fluctuations of order parameters,
as well as the meso-scale dynamics that govern various pattern forming phenomena.

3.1 The Ginzburg-Landau Free Energy Functional

To show how to incorporate interfaces between phases, it is instructive to return to the simple binary
model examined in section (2.1). It is reasonable to expect that the interaction energy between elements,
previously assumed constant, is in fact spatially dependent and varies between any two elements i and j.
Assuming for simplicity that εAA = εBB (b = 0), the mean internal energy, U ≡ 〈E[{ni}]〉 in Eq. (2.12),
can be expressed as

U =
1

2

N∑
i=1

∑
j=1

εij(~xi − ~xj)φi(1− φj) (3.1)

where the constant term in Eq. (2.1) has been neglected. The interaction energy depends on the separation
between elements (εij = εji) and the j summation is assumed to be over the ν nearest neighbours of the
ith element for simplicity. To proceed, use is made next of the algebraic identity

φi(1− φj) = ([φi − φj ]2 − [φ2
i + φ2

j ] + 2φi)/2 (3.2)

Equation (3.2) is substituted into Eq. (3.1), which is then simplified by making the assumption that for
any i, εij is negligible for any j > ν (which in this case spans the ν = 4 nearest neighbours). These
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assumptions make it possible to re-write Eq. (3.1) as

U =
1

4

N∑
i=1

∑
j=1

εij(φi − φj)2 +
1

2

N∑
i=1

(1− φi)φi

∑
j 6=i

εij

 (3.3)

Further, assume that the interaction energy per particle εij → εi/ν, where εi is the isotropic mean energy
over the ν nearest neighbours of element i.

In the limit where any two adjacent elements i and j represent two locations that are physically
separated by an ”infinitesimal” distance 1 the sum

1

2

∑
j=1

(φi − φj)2 = a2

[
1

2

(
(φi − φR)

2

a2
+

(φi − φL)
2

a2

)
+

1

2

(
(φi − φT )

2

a2
+

(φi − φB)
2

a2

)]
≈ a2|∇φ(~xi)|2 (3.4)

in 2D, where φR, φT , φL and φB represent φj evaluated at the right, top, left and bottom neighbours
of the ith element, respectively. The large round brackets in the first line of Eq. (3.4) represent the
magnitudes of one-sided gradients at the point i. The vector ~xi on second line of Eq. (3.4) represents the
position centered at the element labelled by i. To make the transition to the continuum limit complete,
the ”i” summation in Eq. (3.3) is also replaced by its continuum analog, an integral. In d-dimensions
this is accomplished by writing ∑

i

→
∫
V

dd~x

ad
(3.5)

where the division by ad is intended to encapsulate the volume that was previously contained within one
element, which is the distance between two discrete points, of order the lattice constant.

With the definitions in Eqs. (3.4) and (3.5) the total internal energy in Eq (3.3) can be written, in
the 3D continuum limit, as

E =

∫
V

(
1

2
|Wo∇φ|2 +

1

2a3
ε(~x)φ(~x)(1− φ(~x))

)
d3~x (3.6)

where the coefficient Wo ≡
√
ε(~x)/(νa) has been defined (a is replaced by a(d−2) in d dimensions). This

parameter will be seen below to be intimately connected with surface energy since it multiples a gradient
in the order parameter φ, which only varies significantly at interfaces where there is a change of order.

Including the entropic contribution to the free energy is done in a similar way to the internal energy.
This gives

S = −kB
∫
V

(φ(~x) lnφ(~x) + (1− φ(~x)) ln(1− φ(~x)))
d3~x

a3
(3.7)

where the integrand in Eq. (3.7) can now be seen as a local entropy density (i.e. φ → φ(~x), making
the the total entropy an integral of the entropy density overt the volume V of the system. Combining
Eqs. (3.6) and (3.7) thus yields the total free energy of the binary alloy,

F [φ, T ] =

∫
V

{
1

2
|Wo∇φ|2 + f(φ(~x), T (~x))

}
d3~x (3.8)

1Here ”infinitesimal” refers to a length scale which is small relative to the size of the interface width, but still large
compared to the inter-atomic spacing of the solid.

24



where the bulk free energy density is given by

f(φ(~x), T (~x)) =
ε(~x)

2a3
φ(~x)(1− φ(~x)) +

kBT

a3
(φ(~x) lnφ(~x) + (1− φ(~x)) ln(1− φ(~x))) (3.9)

Equation (3.8) is the simplest representation of a free energy that combines the bulk thermodynamics
of a simple binary alloy with a minimal description of interfacial energy. Equation (3.8) is often referred
to as a Ginzburg-Landau [97] free energy. The free energy of the form in Eq. (3.8) serves as a starting
point for many phenomena that are modeled using the phase field methodology. In general, f(φ, T ) can
be a complex function like Eq. (3.9), or it can be approximated by a polynomial series that is interpreted
as a Taylor series expansion of f(φ, T ) about disordered phase (e.g. via the generalized free energy
expansion of Eq. (2.38)). This formalism allows for a meso-scopic description of that accounts for bulk
thermodynamics and interfaces. Consider, for example, the magnetic system studied in section (2.1.2).
The gradient term in Eq. (3.8) describes a microscopic zone where the local magnetization varies abruptly
between two magnetic domains .

3.2 Equilibrium Interfaces and Surface Tension

Statistical mechanics dictates that thermodynamic equilibrium is characterized by a state that minimizes
some thermodynamic potential. For bulk phases (i.e. ignoring interfaces) this implies that ∂G(xi)/∂xi =
0 for all xi, where xi represent any internal degree of freedom and where G is a relevant potential. For the
case of the Ginzburg-Landau free energy defined in Eq. (3.8), equilibrium must, by construction, involve
“states” that are actually continuum fields such as φ(~x), T (~x), etc. An analogous example is one where it
is required to find the form of the equilibrium curve of a cable stretched between two poles. That case is
solved by finding the shape of the curve that minimizes the total potential energy, which is a functional of
the cable profile. Analogously, in a system described by Eq. (3.8), “equilibrium” must involve achieving
a state of the field variable φ(~x) that minimizes the total Ginzburg-Landau free energy functional F [φ]
(e.g. for the Ising ferromagnet) or the grand potential Ω = F [φ]− µ

∫
φd3~r (e.g. for the alloy).

The minimization process of a functional F [φ] with respect to the function φ is achieved by a so-called
variational derivative, and is denoted by

δF [φ]

δφ
= 0, (3.10)

For a general free energy functional of the form

F [φ] ≡
∫

vol

f(φ, ∂xφ, ∂yφ, ∂zφ)dV (3.11)

the variational derivative of F [φ] with respect to the field φ is given by letting φ→ φ+ δφ in Eq. (3.11),
expanding to linear order in δφ, and identifying δF/δφ via the definition,

F [φ+ δφ]− F [φ] =

∫
V

(
δF

δφ
δφ+ · · ·

)
dV (3.12)

Applying this definition to Eq. (3.11) gives,

δF [φ]

δφ
≡ ∂f

∂φ
−
{
∂x

(
∂f

∂(∂xφ)

)
+ ∂y

(
∂f

∂(∂yφ)

)
+ ∂z

(
∂f

∂(∂zφ)

)}
(3.13)
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The first term on the right hand side of Eq. (3.13) affects only the algebraic, or bulk, part of the Ginzburg-
Landau free energy functional. The second term is a recipe for obtaining the variational of the free energy
with respect to the gradient energy terms of φ.

Consider, as an example, minimizing the free energy in Eq. (3.8) for the Ising model with B = 0, and
assuming Wo is constant. Using the free energy given by Eq. (2.39), Eq.(3.10) becomes

W 2
o∇2φ0 −

∂f

∂φ0
= W 2

o∇2φ0 − a2(T )φ0 − a4(T )φ3
0 = 0 (3.14)

where the notation φ0 is used here to denote the minimizing state of F [φ]. The solution of Eq. (3.14)
in 1D (which represents an equilibrium one dimensional two-phase interface) is obtained by multiplying
both sides of the equation by the dφ0/dx and integrating from −∞ to a position x. This gives,

W 2
o

2

∫ x

−∞

∂

∂x′

(
∂φ0

∂x′

)2

dx′ −
∫ x

−∞

∂φ0

∂x′
∂f

∂φ0
dx′ = 0

W 2
o

2

(
∂φ0

∂x

)2

− (f(φ0(x))− f(φ0(−∞))) = 0 (3.15)

As a common example, substituting f(φ) = a2φ
2/2 + a4φ

4/4 into Eq. (3.15) gives

φ0(x) =

√
|a2|
a4

tanh

(
x√
2ξc

)
(3.16)

where here ξc = Wo/
√
|a2| (recall that near a critical point, a2 = ao(T − Tc)) is the correlation length

discussed previously. This is a mesoscopic length scale over which the change of order in φ occurs.
The hyperbolic tangent solution has two limits: φ0(x → ±∞) = ±

√
|a2|/a4, which describes the order

parameter in the bulk phases of the alloy. The transition region wherein −
√
|a2|/a4 < φ0(x) <

√
|a2|/a4

defines the interface between the two phases.
To calculate the interface tension associated with the order parameter profile in Eq (3.16), φ0 is

substituted into full Ginzburg-Landau free energy Eq. (3.8), after which the bulk free energy density,
given by f(φ0) (T dependence dropped), is eliminated using the the second line of Eq. (3.15). Thus,

F = A

∫ ∞
−∞

{
W 2
o

2

(
∂φ0

∂x

)2

+ f(φ0(~x))

}
dx

= A

∫ ∞
−∞

{
W 2
o

(
∂φ0

∂x

)2

+ f(φ0(−∞))

}
dx,

(3.17)

where A is the transverse area of the flat interface whose energy we are calculating. The second term
in the second line of Eq. (3.17) is the total free energy density of a bulk solid phase. Subtracting it out
leaves the remaining, interfacial, free energy, i.e.,

Aσ ≡ F − Feq = AW 2
o

∫ ∞
−∞

(
∂φo
∂x

)2

dx (3.18)
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where σ defines the interface energy per unit area, and where Feq is the bulk free energy density integrated
over the volume of the system 2.

The units of Eq. (3.18) can be made more apparent if the order parameter field φo(x) is written as
φo(u) where u ≡ x/

√
2ξc. Substituting this scaling form into Eq. (3.18) gives

σ =
Wo

√
|a2|√
2

σφ, (3.19)

where the dimensionless constant σφ is given by

σφ ≡
∫ ∞
−∞

(
∂φo(u)

∂u

)2

du (3.20)

Since Wo has units [J/m]1/2 and a2 has units of [J/m3], σ has units of energy per unit area (or energy
per unit length for for a 1D interface). It is referred to as the surface tension because its plays the role
of a force per unit length of interface.

Free energies similar to Eq. (3.8) and equilibrium profiles similar to Eq. (3.16) will be encountered
frequently in phase field modeling of solidification or other phase non-equilibrium phase transformations.
In the case of solidification, for example, the phase field φ will denote the local order of a solid liquid
system. In that case, the equilibrium φ profile thus characterizes the solid liquid interface, an atomically
diffuse region of order ξc within which atomic order undergoes a transition from a disordered liquid to
an ordered solid.

2Note, that for the case of a conserved order parameter, the definition of surface energy can be similarly given in terms
of the grand potential Ω[φ]. This will be used in the study of binary alloys in the next chapter.
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Chapter 4

Non-Equilibrium Dynamics

The previous chapter examined the significance of spatial variations in an order parameter. In the context
of materials microstructure, these variations demarcate regions of bulk phase from phase boundaries or
interfaces. Another important aspect that must be examined is the time dependence of order parameter
changes. Along with the dynamics of other fields (e.g. temperature), the dynamics of order parameters
are a critical ingredient in the development of a phenomenology for modeling the microstructure evolution
of in phase transformations.

It is typical in non-equilirium dynamics to use a locally defined equilibrium free energy or entropy to
determine the local driving forces of a phase transformation. These generalized forces or their fluxes are
used to drive the subsequent kinetics of various quantities. The premise of this approach is that matter
undergoing phase transformation is assumed to be in local thermodynamic equilibrium and is driving
toward a state of global thermodynamic equilibrium (a state which is, however, never actually realized
in practice). This formalism thus constitutes a coarse-grained description where space can be thought of
as a collection of volume elements, each large enough that it can be assumed to be in thermodynamic
equilibrium (with respect to the local temperature, volume, particles, etc.) but still small enough to
resolve micro-scale variations in microstructure.

Kinetic equations for order parameter fields are called conserved if they take on the form of a flux-
conserving equation. This implies that an integral of the the field over all space is a constant (e.g. total
solute concentration in a closed system). The time evolution of fields whose global average need not be
conserved is typically governed by a non-conserved equation. These include magnetization and sublattice
ordering. The kinetics of these quantities are typically formulated as a Langevin-type equation, which
evolves field such as to minimize the total free energy (or, conversely, to maximize the total system
entropy). In other words, non-conserved fields evolve according to the steepest functional gradient of the
free energy, which hopefully pushes the order parameter to minimum of the free energy landscape.

The following subsections outline the basic evolution equations governing conserved and non-conserved
order parameters. In all cases the free energy being referred to is in the context of the Gizburg-Landau
free energy functional in Eq. (3.8), where f(φ, T ) depends on the particular phase transformation under
consideration.
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4.1 Driving Forces and Fluxes

Consider a system that is in thermal equilibrium. Its change in entropy is given by

dS =
1

T
dU +

p

T
dV −

∑
i

µi
T
dNi (4.1)

where T is the temperature, V its volume and Ni the number of particles of species i. As this sys-
tem undergoes a phase transformation, the second law of thermodynamics demands that dS > 0 in a
closed system. In the case of a constant volume, the driving forces or so-called ”affinities” driving the
corresponding changes in internal energy (U) and particle number (Ni) are

dS

dU
=

1

T
dS

dNi
= −µi

T
(4.2)

If Eq. (4.1) is applied locally to small volume elements of a non-uniform system, then the second law
further implies that changes, or gradients, in S from one location in the system element to another must
be mediated (i.e. accompanied by) gradients of the driving forces (i.e. affinities) of the local internal
energy and local number of particles. More generally, changes in any quantity are assumed to be governed
by a flux of that quantity which is linear combination of gradients of the driving forces in Eq. (4.2). i.e.

~J0 = M00∇
(

1

T

)
−

N∑
j=1

M0j∇
(µj
T

)
~Ji = Mi0∇

(
1

T

)
−

N∑
j=1

Mij∇
(µj
T

)
(4.3)

Here ~J0 is associated with a flux of internal energy and ~Ji is associated with the flux of particle number
of species i. The coefficients of the tensor Mij (i, j = 0, · · ·N) were derived by Osanger, who also showed
that the Osanger coefficient matrix is symmetric. This is referred to as the Osanger reciprocity theorem.
The derivation of Eqs. (4.3) presented here is empirical, based largely on intuition. The reader is referred
to reference [20] for a more mathematically rigorous treatment of generalized driving forces based on
entropy production.

4.2 The Diffusion Equation

It is instructive to illustrate how to use the driving forces in Eqs. (4.3) to derive Fick’s second law of mass
and heat diffusion. Consider, first, mass transport in a phase of a two-component alloy at a fixed, uniform
temperature T . For an ideal alloy, it suffices to consider only fluxes in the solute species and ignore fluxes
in the host atoms, i.e. only the off-diagonal Osanger coefficient M11 6= 0. Under these conditions the flux
of mass is governed by ~J1 = −M11∇ (µ1/T ), i.e. that of the solute atoms. Since solute atoms must be
conserved, their dynamics must obey the flux conserving equation of mass conservation, i.e.

∂c

∂t
= −∇ · ~J1 (4.4)
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Substituting above the expression for the flux ~J1into Eq. (4.4) gives

∂c

∂t
= ∇ ·

(
M11

T
∇µ1

)
= ∇ ·

(
RM11

c
∇c
)

(4.5)

where c is the local solute concentration (in units of moles/volume) and the expression µ1 ≈ RT ln c (R
is the natural gas constant) has been used to approximate the local chemical potential in the alloy, thus
leading to the the second line of Eq. (4.5). Equation (4.5) can be immediately recognized as Fick’s second
law with

D =
RM11

c
(4.6)

It is interesting to note that the Osanger coefficient –which is inherently linked to microscopic parameters
and typically difficult to calculate analytically– can be experimentally approximated by measuring the
diffusion coefficient D(c).

Fourier’s law of heat conduction in a pure material can similarly be derived by considering the flux
of internal energy with only M00 6= 0. The calculation proceeds identically to the one above, yielding

∂H

∂t
= ∇ · (k∇T ) (4.7)

where H is the local enthalpy density and k is the thermal conductivity coefficient, given by

k =
RM00

T 2
(4.8)

The Osanger coefficient M00 can be determined experimentally by measuring the heat conduction coef-
ficient.

4.3 Dynamics of Conserved Order Parameters: Model B

Consider next the dynamics of a more complex multi-phase material that is described by a spatially
varying order parameter that represents a conserved quantity. Take as a specific example the simple
binary alloy described by the phase diagram in Fig. (2.4b). Here, the definition of the order parameter
represents an impurity concentration. A high temperature disordered phase with average concentration
φ = φo will undergo phase separation once temperature is lowered below Tc. Below the dashed or so-
called spinodal line in Fig. (2.4b), the phase separation will be spontaneous. The dynamics of this process
are fundamentally driven by gradients in chemical potential between or within phases (e.g. the second of
Eqs. (4.2)). This process is called spinodal decomposition and was studied in detail by Cahn and Hilliard
[41]. A non-uniform system such as this considers interactions between volume elements, making the
system free energy a functional of the concentration and its gradients, meaning it is written in the form
F [φ] =

∫
V
f(φ,∇φ) d3x, where f(φ,∇φ) is the free energy density. Here, the chemical potential becomes

a functional derivative of F [φ] with respect to the concentration field φ(x), expressed as

µ =
δF [φ]

δφ
(4.9)
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Figure 4.1: Top to bottom: time sequence showing phase separation during spinodal decomposition.
Fluctuations on small length scales grow into larger domains, the size of which diverges with time ac-
cording to a power law. Color represents solute concentration different in the two phases, with red being
the solute rich phase and blue the solute poor phase.

The functional derivative in Eq. (4.9) represents how F varies with a change of φ(x) at the position x.
Since thee free energy density depends on local gradients of the order parameter φ, Eq. (4.9) defines
a differential equation for the equilibrium order parameter profile. In mean field theory, when spatial
gradients are neglected, Eq. (4.9) reduces to the usual definition of the chemical potential.

Since φ represents a concentration difference, it satisfies the mass conservation equation,

∂φ

∂t
= −∇ · ~J (4.10)

The flux in Eq. (4.10) is derived from Eq. (4.3) (assumed for simplicity that the non-diagonal Osanger
coefficients are zero) as

~J = −M∇ · µ (4.11)

where

M ≡ M11

T
≈ M11

Tc
(4.12)

is the mobility of solute. The replacement of T → Tc assumes that just below the critical point, temper-
ature can be approximated by the critical temperature Tc to lowest order. Combining Eqs. (4.9)-(4.11)
gives the following equation of motion for the order parameter of a phase separating alloy mixture.

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
(4.13)
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Equation (4.13) is the celebrated Cahn-Hilliard equation, or Model B as it is often called in the condensed
matter physics literature, after the paper by Hohenberg and Halperin [93], which studied and classified
the various order parameter models and the associated physical phenomena they can be used to describe.

As a specific example of the Chan-Hilliard equation for spinodal decomposition, f(φ, T ) from Eq. (2.39)
is substituted into Eq. (4.13). Applying the rules of variational derivatives in Eq. (3.13) gives

∂φ

∂t
= M∇2

(
−W 2

o∇2φ+
∂f

∂φ

)
(4.14)

= M∇2
(
−W 2

o∇2φ+ a2φ+ a4φ
3
)

(4.15)

where M is a mobility for atomic re-arrangement, W 2
o is an energy per unit length and f, a2, a4 are

energies per unit volume. it has been assumed for simplicity that the mobility M is a constant. It should
be noted that because of the conservation law a term of the form ∇4φ will be generated. Figure (4.1)
shows a simulation of the dynamics of Eq. (refcahn-hilliard) with a2 = −1 and a4 = 1 and M = 1.
The concentration field φ was initially set to have random initial fluctuations about φ = 0 and periodic
boundary conditions were used in the simulation. It is seen that since a2 < 0 (which is the case for
T < Tc), phase separation occurs. The average alloy concentration satisfies 〈φ〉 = φo ≈ 0, the initial
average of the order parameter. Stochastic noise (discussed in section (4.6)) which emulates thermal
fluctuations was not used in this simulation. Since for any temperature T < Tc the system is unstable to
any fluctuation, phase separation in this example was merely initiated using the randomness inherent in
computer-based number generation. Numerical methods for simulating model B are discussed in further
detail in section (4.9).

4.4 Dynamics of Non-Conserved Order Parameters: Model A

Some phase transformations involve quantities (order parameters) that do not evolve constrained to a
conservation law. Well known examples include magnetic domain growth, order/disordered transitions,
or isothermal solidification of a pure material in the absence of a density jump. In the presence of a
small magnetic field, a disordered magnetic state with zero magnetization, quenched below the critical
temperature will eventually develop a net magnetization. Even cooling below the Curie temperature
without an external field will generally lead to a small net magnetization in a finite system. Similarly,
a glass of water (disordered phase) cooled below the melting temperature will entirely transform to
ice. This is in contrast to phase separation in an alloy mixture, where the the system evolves toward
equilibrium under the constraint that total solute be conserved. Order parameters that evolve without
global conservation are called non-conserved order parameters.

Motivated by Eq. (4.1), a new driving force for the rate of change of non-conserved order parameter
is defined as δF/δφ. Since there is no conservation imposed on 〈φ〉, the simplest dissipative dynamical
evolution for a non-conserved order parameter is given by “Langevin” type dynamics 1

∂φ

∂t
= −M δF [φ, T ]

δφ
≡M

(
W 2
o∇2φ− ∂f(φ, T )

∂φ

)
(4.16)

The right hand side of Equation (4.16) is a driving force that drives the system down gradients in the free
energy landscape of F [φ]. This equation is referred to as model A in Hohenberg and Halperin classification

1It is strictly incorrect to use the name “Langevin dynamics” without also including a stochastic source term to describe
thermal fluctutions. This will be done below. For the sake of examining this equation, we’ll omit noise for the moment.
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Figure 4.2: Left to tight and top to bottom: time sequence of magnetic domain formation and coarsening
under model A dynamics. The colour scale is the z-direction of magnetization, with blue representing
downward magnetization and brown upwad magnetization.

of phase field models[93]. It is a paradigm used to describe the evolution of an order parameter that
does not satisfy a global conservation law. Using, once again, f(φ, T ) from Eq. (2.39), the dynamics of a
system of Ising spins in the absence of an external field evolves can be described by

∂φ

∂t
= M

(
W 2
o∇2φ− a2φ− a4φ

3
)

(4.17)

which is obtained by substituting Eq. (2.39) into Eq. (4.16). For a system of Ising spins in an external
field, Eq. (2.51) can be used, where the constant a3 can describe a coupling to the externalfield. Fig-
ure (4.2) shows a sequence of time slices in the evolution of magnetic domains simulated numerically using
model A dynamics. The grey scale shows the magnitude of φ, which in this case defines the z-direction
magnetization. The simulation starts with initial fluctuations, out of which magnetic domains eventually
emerge and coarsen. Numerical methods for simulating equations such as the Cahn-Hilliard equation are
discussed in more detail in section (4.9).

It is worth mentioning the tempting pitfall regarding the use of Model A dynamics to evolve the
time evolution of a conserved order parameter. Specifically, it might appear feasible to use Eq. (4.16)
to describe the dynamics of phase separation in a simple binary alloy by adding a Lagrange multiplier
term of the form λ

∫
φ(~x)d3~x to the free energy in order to conserve total solute. While conserving total

mass, such a free energy allows for the possibility for a solute source in one part of the system to be
countered by a solute sink many diffusion lengths away from the source. That would be unphysical for
any propagating phenomenon, not to say the least about a slow diffusive processes. Such an approach
can only be used to describe the equilibrium properties but dynamics would be fictitious.

4.5 Generic Features of Models A and B

Equations (4.14) and (4.16) underlie the basic physics of many common phase field models in the liter-
ature. They have the following generic features: (i) an appropriate order parameter is defined for the
phenomenon in question; (ii) a Ginzburg-Landau free energy density is constructed to reflect the sym-
metries of bulk phases as a function of temperature (and other intensive thermodynamics quantities), as
well as the interfacial energy in the system; (iii) equations of motion for the order parameter constructed
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on the principle of free energy minimization and, if required, conservation laws. In chapter (5) model A
and model B type equations will appear again, this time coupled to each other in the description of the
solidification of a pure material.

A fourth ingredient that must strictly be included in Eqs. (4.14) and (4.16) is the addition of stochastic
noise sources with which to model thermal fluctuations. These are crucial to properly describe all the
degrees of freedom at the microscopic level (e.g. phonon vibrations in a solid or atomic collisions in
a liquid) that act on length scales below the correlation length ξc, which sets the scale over which
fluctuations or sharp changes of the order occur (e.g. ξc = Wo/

√
|a2| in section (3.2)), and on atomic

time scales. These are usually subsumed mathematically into a random variable appended to the end of
the model. The role of noise on order parameter fluctuations are discussed further in section (4.6).

It should be noted that it is often not easy (or possible) to define a well defined order parameter
φ in the sense outlined in Landau theory (e.g. glasses). Indeed, in most phase field models the ”free
energy” is expanded in terms of a what is generally called a ”phase field parameter” φ, which is motivated
from Landau theory but is otherwise phenomenological in nature. Conversely to the more fundamental
approach taken here in the construction of models A and B, many phase field models and their dynamics
are constructed to be consistent with a particular class of kinetics, sharp-interface equations, etc. This
approach goes back to Langer [138]. In that sense noise can be seen as a way to stimulate nucleation of
phase and appropriate interface fluctuations.

4.6 Equilibrium Fluctuations of Order Parameters

The notion of equilibrium can often be misleading as it gives the impression that a system just sits there
and all motion in time has stopped. Due to thermal fluctuation, all quantities of a system in equilibrium
are actually continuously fluctuating in space and in time in a way that is consistent with the statistical
thermodynamics. This section analyzes equilibrium fluctuations of order parameters governed by model
A and model B dynamics.

4.6.1 Non-conserved order parameters

To take thermal fluctuations into account for a phase described by a non-conserved order parameter,
Eq. (4.16) needs to be upgraded to

∂φ

∂t
= −M δF [φ, T ]

δφ
= M

(
W 2
o∇2φ− ∂f(φ, T )

∂φ

)
+ ξ(~x, t) (4.18)

where ξ(~x, t) is a stochastic noise term, as described in section (4.5), which is added to incorporate thermal
fluctuations that are microscopic in origin (e.g. phonon vibrations) which take place on length sales
smaller than correlation length ξ, i.e. angstrom scales, and on ps time scales. As a result, their addition
as a ”noise” source superimposed onto the slower long wavelength dynamics of the order parameters field
is in most situations justified. These were first added into phase field modeling by Cook [54]. The random
noise term ξ is selected from a statistical distribution satisfying

〈ξ(~x, t)ξ(~x′, t′)〉 = Aδ(~x− ~x′)δ(t− t′) (4.19)

where the primes denotes a different position/time than the un-primed variables and A is a temperature
dependent constant. In plain english, Eq. (4.19) means that any two fluctuations in the system are
uncorrelated in space (i.e. between positions ~x and ~x′) and time (i.e. between time t and t′).
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The form of A in Eq. (4.19) is found by considering the dynamics of model A for a phase that is in
a stable state of the free energy density (e.g. Eqs. (2.39) and (2.51)). In the case of small deviations
in the order parameter, φ = φmin + δφ, the bulk free energy can be approximated to lowest order by
f(φ, T ) ≈ fmin + (a2/2)δφ2 for a stable, single-phase, state. Here a2 ≡ f ′′(φmin) and double primes
denote second derivative. Model A dynamics can thus be approximated by

∂δφ

∂t
= M

(
W 2
o∇2δφ− a2δφ

)
+ ξ(~x, t) (4.20)

Re-writing Eq. (4.20) in Fourier space gives

∂φ̂k
∂t

= −M
(
a2 +W 2

o k
2
)
φ̂k + ξ̂k (4.21)

where k is the magnitude of the wave vector ~k = (kx, ky, kz), φ̂k represents the Fourier transform of

δφ(x, t) and ξ̂k is the Fourier transform of the noise source (assumed continuous on meso-scopic time and
length scales where the order parameters is continuous). Equation (4.21) is a first order linear differential
equation, whose solution is

φ̂k(t) = e−M(W 2
o k

2+a2)t

(
φ̂k(t = 0) +

∫ t

0

eM(W 2
o k

2+a2)t′ ξ̂k(t′)dt′
)

(4.22)

Consider next the structure factor, defined according to

S(k, t) = 〈|φ̂k|2〉 (4.23)

which at this point in an extensive quantity (see Appendix (B.1) for details of arriving at Eq. (4.23)).
The structure factor characterizes the statistics of spatio-temporal fluctuations in the order parameter of
the phase and can be directly measured from an x-ray or neutron scattering experiment of a material or
phase. The brackets in Eq. (4.23) denote ensemble averages or averages of |φ̂k|2 over many realizations of

the system fluctuating in time, about equilibrium. Substituting the solution for φ̂k(t) into the definition
of S(k, t) gives,

S(k, t) = e−2γktS(k, t = 0) + (2π) δ(0)
A

2γk

(
1− e−2γt

)
(4.24)

where the definition γk ≡ M(W 2
o k

2 + a2) has been made. The transient dynamics of the structure
factor describe the way fluctuations on certain length scales decay in a system. For example, the long
wavelength k → 0 modes decay exponentially with a time scale tc = 1/(Ma2). Comparing the late
time (t→∞) limit of Eq. (4.24) with its theoretical and experimentally determined form (the so-called
Ornstein Zernike form [112] ) gives,

S(k)

V
=

A

2γk
=

A/2Ma2

1 + (W 2
o /a2)k2

=
(kBT/f

′′
)

1 + (ξck)2
, (4.25)

where f
′′

is the second derivative of the bulk free energy density f(φ, T ) evaluated at the equilibrium
order parameter, φmin, and ξc = Wo/

√
a2 is defined as the correlation length. The right hand equality in

Eq. (4.25) A gives
A = 2MkBT (4.26)
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4.6.2 Conserved order parameters

The analysis of section (4.6.1) can be extended in a straightforward way to the fluctuations of a phase
described by a conserved order parameter. Expanding once again the order parameter as φ = φmin + δφ,
linearizing the free energy about φ = φmin and substituting into Eq. (4.14) now gives 2,

∂δφ

∂t
= M∇2

(
−W 2

o∇2 + f
′′
)
δφ+ ξ(~x, t) (4.27)

where for conserved dynamics, the noise term at the end of Eq. (4.14) satisfies

〈ξ(~x, t)ξ~x′, t′)〉 = −A∇2δ(~x− ~x′)δ(t− t′) (4.28)

Equation (4.27) is different from Eq.(4.20) by the addition of the outer laplacian, due to the conservation
law. The solution of Eq. (4.27) in Fourier space is exactly the same as Eq. (4.22), expect that now
γk = Mk2(W 2

o k
2 + f

′′
), i.e there is an extra k2 multiplying the γk of section (4.6.1). It turns out that

the late time (t → ∞) structure factor for a conserved order parameter remains identical to Eq. (4.25),
yielding Eq. (4.26) for the strength of noise source in this case as well

Another important feature of the addition of noise to conserved, and non-conserved, dynamics is that
it assures that systems evolve to an equilibrium defined by the probability P [φ] given by

P [φ] ∝ e−(F [φ]−Fo)/kBT (4.29)

where Fo is some reference free energy.

4.7 Stability and the Formation of Second Phases

With a better understanding of the role of thermal fluctuations around equilibrium, it is instructive to
return to the issue of stability of an initial phases cooled below a transition temperature during a phase
transformation. This topic was examined qualitatively in sections (2.2.3) and (2.2.5).

4.7.1 Non-conserved order parameters

Consider a general bulk free energy f(φ, T ) and a system prepared in a state φ = φmin and which is
initially a minimum of the free energy, and which is then lowered below a transition temperature. To
make matters concrete, two cases are examined. The first involves a second order phase transition,
where a system in a state with φ = 0 is the minimum of the free energy defined by Eq. (2.39) above
Tc (disordered phase) and becomes a maximum below the critical temperature Tc (see Fig. (2.4)). The
second example considers a first order transition described by the free energy in Eq. (2.51) where the
disordered phase with φ = 0 that is stable above a transition temperature, Tm becomes a meta-stable
below Tm (see Fig. (2.5)). In both cases, the initial state satisfies ∂f/∂φ|φmin = 0 after being cooled
below the transformation temperature.

Consider, next, a small perturbation of the initial state, φ = φmin + δφ. The dynamics of the
perturbation δφ are determined by substituting φ into the model A dynamics of the Eq. (4.18). Expanding

2Strictly, when considering fluctuations of conserved order parameters, we should linearize around the equilibrium state,
φeq, which is not in general φmin. However that won’t change the fluctuation theory derived above.
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the non-linear terms of the free energy to second order in δφ yields,

∂δφ

∂t
= M

(
W 2
o∇2δφ− ∂f

∂φ

∣∣∣∣
min

− ∂2f

∂φ2

∣∣∣∣
min

δφ

)
+ ξ

= M
(
W 2
o∇2 − f

′′
)
δφ−Mf ′ + ξ (4.30)

= M
(
W 2
o∇2 − f

′′
)
δφ+ ξ (4.31)

where the bulk free energy f(φ, T ) has been expanded to second order in δφ and substituted into
Eq. (4.18). The notation f ′ and f

′′
denote the first and second derivatives of f(φ), respectively, evaluated

at the initial state, which is assumed to be an extremum of the free energy, i.e. f
′

= 0. Employing once
again the Fourier transform technique, Eq. (4.31) can be transformed into

∂δφ̂k
∂t

= −M
(
W 2
o k

2 + f
′′
)
δφ̂k + ξ̂k (4.32)

the solution of which is

δφ̂k = e
−M
(
W 2
o k

2+f
′′)
t

(
δφ̂k(t = 0) +

∫ t

0

eM(W 2
o k

2+f ′′)t′ ξ̂k(t′)dt′
)

(4.33)

When the coefficient γk ≡ W 2
o k

2 + f
′′

in the exponential of Eq. (4.33) becomes negative, δφ̂k will
always become linearly unstable. This happens fastest for the k = 0 mode (i.e. the longest wavelengths)
and only when f

′′
< 0, due to the sign of the argument of the exponential in Eq. (4.33). This situation

is precisely satisfied by a first or second order phase transition when quenching (e.g. cooling) below
the spinodal line of the phase diagram, which is defined by f

′′
< 0. For example, in a second order

transformation, right at the critical temperature f
′′

= 0, which is a saddle point in the free energy
landscape of Fig. (2.4). Infinitesimally below the critical temperature, thermal fluctuations will cause
a range of long wavelengths to become linearly unstable, leading to a separation of φ into one or both
of the free energy minima, described by the phase diagram. In a first order transition, f

′′
> 0 in the

initial states of the system (assumming these we prepared away from the critical order parameter). This
corresponds to a state of a system that is stable above the transition temperature and remains meta-stable
below the transition temperature, TM . This is a feature characteristic of a first order transformations.
As discussed in section (2.2.5) this situation requires thermal fluctuations to overcome an energy barrier,
through nucleation. Cooling sufficiently below TM will ultimately lead to a situation where f

′′ ≤ 0, in
which case the first order transformation no longer requires nucleation to proceed.

4.7.2 Conserved order parameters

The stability of a conserved order parameter can be more complex than a non-conserved one since the
average of the order parameter must be preserved when crossing below the transition temperature. An
instructive example is found by considering a binary mixture described by the free energy in Eq. (2.39),
with a spinodal phase diagram such as that in Fig. (2.4). Consider a specific alloy with a non-zero initial
relative solute concentration (φo 6= 0), cooled just below the co-existence region of the phase diagram.
If the system is cooled below the coexistence but above the spinodal line (defined by f

′′
= 0), thermal

fluctuations are required to nucleate and grow a second phase in accordance with conserved dynamics.
If system is cooled below the spinodal line, phase separation will commence without nucleation. In
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both cases, growth of the second phase domains will be governed by conserved dynamics, which implies
that both cases the final values of φ in the respective parent and daughter phases will be set by the
Maxwell equal area construction, also known as the common tangent construction. Contrast this to a
first order transitions involving non-conserved order parameters (e.g. solidification), where the stable
high temperature phase can evolve completely into the stable (T < Tm) phase.

The linear stability of meta-stable of an initial phase evolving by conserved dynamics proceeds anal-
ogously to the section (4.7.1). Starting from Eq. (4.27), the linearized dynamics of δφ in Fourier space
become

∂δφ̂k
∂t

= −Mk2
(
W 2
o k

2 + f
′′
)
δφ̂k +

(
Mf

′
+ ξ̂k

)
(4.34)

the solution of which is

δφ̂k = e
−Mk2

(
W 2
o k

2+f
′′)
t

(
δφ̂k(t = 0) +

∫ t

0

eMk22(W 2
o k

2+f ′′)t′
(
ξ̂k(t′) +Mf

′
)
dt′
)

(4.35)

The stability coefficient to consider is now γk ≡ k2(W 2
o k

2 +f
′′
). Note also that in this example the initial

state, φ = φo, is not necessarily an extremum of the free energy f(φ, T ) and so ∂f/∂φ|φo 6= 0 in general.
Unlike the case of non-conserved dynamics the k = 0 mode is always marginally stable. It is a finite

wavelenumber kc =
√
−f ′′(φo)/

√
2Wo that becomes linearly unstable fastest in this case, with its growth

rate depending on f
′′
(φ = φo). For example, for the free energy f = a2(T − Tc)φ2/2 + uφ4/4,

γk = Mk2
(
W 2
o k

2 + ao2(T − Tc) + 3uφ2
o

)
(4.36)

and the kc mode will become unstable when

T < Ts ≡ Tc −
3u

ao2
φ2
o, (4.37)

which also precisely coincides (or defines) the spinodal temperature in Fig. (2.4b).

4.8 Interface Dynamics of Phase Field Models (Optional)

Before Model A and Model B gained popularity for their role in more complex phase field models for
solidification and related microstructure problems, they were regularly used in the condensed matter
theory to derive governing equations of motion for interfaces between phases. While these topics are
somewhat removed from the main thrust of this book, it is instructive to briefly reviewed some of the
more interesting of these topics, without going into the more difficult mathematical details. The interested
reader is invited to consult Ref. [66] and references therein for further mathematical details.

4.8.1 Model A

Consider for concreteness zooming into the interface of a large magnetic domain evolving under Model
A dynamics. Let the position of the interface be denoted by the function h(x, t), where the curvature of
the domain is gradual enough that the position of the interface can be quantified by a one dimensional
variable x, as illustrated in Fig. (4.3). The two phases are characterized by the order parameters φ+

(spin up) and φ− (spin down), which are defined as the minima of the bulk phase field free energy defined
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by f = Hg(φ) + fb(φ), where H is the nucleation barrier between φ±, g(φ) is a symmetric double-well
potential with minima at φ = φ± and has a barrier of unit magnitude between the two phases, and fb is a
non-symmetric part of the free energy, which we will assume also has local minima at the states φ = φ±.
fb may also depend on magnetization (or temperature if this is applied, for example, to crystal growth).

Figure 4.3: An interface separating two magnetic domains. The function h(x, t) measures the distance
to the interface from some reference line. It is assumed that the interface is sufficiently gently curved to
be able to consider the portion of the interface in this one dimensional fashion.

The dynamics of the φ field for this system will be assumed to be described by model A, written here
in the dimensionless form

τ
∂φ

∂t
= −δF

δφ
= W 2

φ∇2φ− dg

dφ
− ∂f±

∂φ
+ η(~x, t) (4.38)

where τ = 1/(MH), Wφ = Wo/
√
H, f± ≡ fb/H and η = τξ, with M the mobility and Wo is energy

scale of the gradient energy coefficient in the free energy functional. The length Wφ sets a characteristic
length of the interface and τ is a characteristic time scale of the model. The variable η(~x, t) is a re-scaled
stochastic noise variable. It will be assumed that the bulk part of the free energy, f±(φ), can be written
as

f±(φ) = εf(φ) (4.39)

where ε ≡ Wφ/do ∝ 1/H is assumed here to be a small parameter, with do the capillary length 3. By
scaling the bulk free energy with ε, the thermodynamic driving force effectively goes to zero when the
interface becomes sharp or equivalently, when the energy barrier between the two phases becomes very
large. The parameter ε thus controls the deviation of the φ field from its form corresponding to a flat
stationary planar interface, denoted here as φ0. In the remainder of this subsection an analysis of the
model A equation will be performed with the aim of deriving an equation of motion for the interface
h(x, t) between φ+ and φ− phases (illustrated in Fig. (4.3)).

3The significance of this specific scaling will be dealt with again in later chapters and Appendix (C), where a more
complex interface analysis of a model A type equation coupled to a model B type diffusion equation is performed to derive
the sharp interface sharp interface boundary conditions of solidification.
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It is instructive to transform the co-ordinates of Eq. (4.38) into a co-ordinate system that is local to
the interface and which measures distances along to and normal to the interface. The co-ordinate along
the arc of the interface is denoted s while that normal to the interface is denoted u (See Fig. (B.1) for
an illustration). The transformation of the gradient squared and time derivative operators in interface-
local (u, s) co-ordinates is discussed in section (C.2) of Appendix (C) and Appendix (B.2) (as well as in
[66]), and will not be reproduced here. Specifically, the transformation of Eq. (4.38) to local interface
co-ordinates becomes

τ

(
∂φ

∂t
− Vn

∂φ

∂u
+ s,t

∂φ

∂s

)
︸ ︷︷ ︸
∂tφ in (u,s) co−ordinates

= W 2
φ

(
∂2φ

∂u2
+

κ

(1 + uκ)

∂φ

∂u
+

1

(1 + uκ)2

∂2φ

∂s2
− uκ,s

(1 + uκ)3

∂φ

∂s

)
︸ ︷︷ ︸

∇2φ in (u,s) co−ordinates

− dg(φ)

dφ
− εdf(φ)

dφ
+ η (4.40)

where κ is the local interface curvature and the notation κ,s denotes differentiation of curvature with
respect to the arc length variable s. Similarly s,t is the time derivative of the local arc length at position
on the interface with time.

It is useful to examine the structure of φ near the interface by re-scaling the normal co-ordinate via
ξ = u/Wφ and the dimensionless arc length via σ = (ε/Wφ)s. In terms of these definitions, curvature is re-
scaled by κ̄ = (Wφ/ε)κ. Meanwhile, the kinetics time scale of atomic attachment to the interface defines
a microscopic speed given by vc = Wφ/τ , which in turn defines a characteristic time for fluctuations
of the interface given by tc = do/vc = τ/ε. Furthermore, the characteristic speed of diffusion of the
interface over the scale of the capillary length is defined by vs = D/do = εvc, where D ≡ W 2

φ/τ is like
an effective diffusion coefficient of model A. In terms of vs and tc, a dimensionless velocity is defined by
v̄n = Vn/vs = τ/(Wφε)Vn and a dimensionless time by t̄ = t/tc = (ε/τ)t. Equation (4.40) can now be
re-written in terms of (ξ, t̄, v̄n). Retaining only terms up to order ε in the resulting scaled equation gives

ε
∂φ

∂t̄
− εv̄n

∂φ

∂ξ
+ ε

∂σ

∂t̄

∂φ

∂σ
=
∂2φ

∂ξ2
+ εκ̄

∂φ

∂ξ
− dg(φ)

dφ
− εdf(φ)

dφ
+ εν (4.41)

It has been assumed without loss of generality that η = εν where ν is a noise source or order one.
It will be assumed that φ can be expanded in a so-called asymptotic series in ε according to

φ(ξ, σ, t̄) = φ0(ξ) + εφ1(ξ, σ, t̄) + · · · (4.42)

where the φ0 solution is, by construction, only a function of the normal co-ordinate since it represents
the solution across a flat stationary profile. The expansion in Eq. (4.42) is substituted into Eq. (4.41).
Collecting the terms not multiplying by ε (referred to as the ”order ε0 terms) gives

∂2φ0

∂ξ2
− g

′
(φ0) = 0 (4.43)

Similarly collecting the ε terms leds to an equation for the perturbation φ1,

∂2φ1

∂ξ2
− g

′′
(φ0)φ1 = −(v̄n + κ̄)

∂φ0

∂ξ
+ f,φ(φ0) + ν (4.44)

Equation (4.43) provides the so-called ”lowest order” solution of the phase field φ. It suffiices to
recognize that it is some analytical solution based on the double-well function g(φ) and it need not be
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explicity solved here. Equation (4.44) can be simplified by multiplied by ∂φ0/dξ and integrated from
ξ → −∞ to ∞, giving∫ ∞

−∞

∂φo
∂ξ
L(φ1)dξ = −(v̄n + κ̄)

∫ ∞
−∞

(
∂φo
∂ξ

)2

dξ +

∫ ∞
−∞

∂φo
∂ξ

f,φ(φ0)dξ +

∫ ∞
−∞

∂φo
∂ξ

ν dξ (4.45)

where L ≡ ∂ξ ξ − g
′′
(φ0) and g

′′
(φ0) denoting the second derivative with respect to φ. Integrating the

integral on the left hand side of Eq. (4.45) by parts gives∫ ∞
−∞

∂φo
∂ξ
L(φ1)dξ =

∫ ∞
−∞

∂φ1

∂ξ

(
∂2φ0

∂ξ2
− g

′
(φ0)

)
dξ = 0 (4.46)

based on Eq. (4.38).
Starting from Eq. (4.45), with the left hand side set to zero, leads to the following relation between

the the local normal interface velocity Vn and curvature,

Vn = −Dκ+ λ+ ζ (4.47)

where D ≡ W 2
φ/τ , λ ≡ vc ∆f±/σφ, with ∆f± ≡ f±(φ+) − f±(φ−), σφ is given by Eq. (3.20) and

ζ = (vc/σφ)
∫∞
−∞ η(u, s, t) ∂uφo du is just a re-scaled stochastic noise term.

The link between cartesian co-ordinates and the interface-local co-ordinates (in terms of which κ and
v are defined) is made by defining the normal distance from the interface through the co-ordiate u given
by

u = (y − h(x, t)) cos(θ) (4.48)

where θ is the angle that the normal to the interface (n̂) makes with the y-axis in Fig. (4.3). The co-
ordinate u to any point depends on the position on the arc of the interface from which u is measured.
In this simple treatment, where the interface is assumed to be very gently curved, the arclength variable
(s) is replaced simply by x. Thus u ≡ u(x, t). (For a more thorough treatment of co-ordinates local
to the interface, the reader is advised to review section (B.2) ). Approximating the normal velocity by
Vn = −∂u(x, t)/∂t gives,

Vn =
∂h/∂t√(

1 + (∂h/∂x)
2
) +

h (∂h/∂x)
(
∂2h/∂x∂t

)
1 + (∂h/∂x)

2 (4.49)

From basic calculus, it is found that for a gently curved interface, curvature is related to the interface
position h(x, t) by

κ = − ∂2h/∂x2(
1 + (∂h/∂x)

2
)3/2

(4.50)

The assumption of small curvatures makes it possible to neglect the second term in Eq. (4.49), which is
third order in the gradients of h. Substituting the resulting expression and Eq. (4.50) into Eq. (4.47),

and expanding the radicals to first order in (∂h/∂x)
2

gives,

∂h

∂t
= D

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ ζ + λ (4.51)
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The last term (λ) can be removed if a new height function h(x, t) → h(x, t) − λt is defined. Equa-
tion (4.53) is the famous Kardar-Parisi-Zhang (KPZ) equation used to describe interface roughening in
many phenomena, ranging from the growth of thin films to smoldering combustion fronts in paper [170].

Interestingly, for a quench just below the transition temperature, λ ≈ 0 and Eq. (4.47) becomes the
Allen-Cahn equation for curvature driven interface growth. In this limit the KPZ equation becomes

∂h

∂t
= D

∂2h

∂x2
+ ζ (4.52)

the form of which can be derived (in 2D) from the free energy functional H

H =

∫
area

{γ
2
|∇h(~x, t)|2

}
d2~x (4.53)

where γ is the energy per unit length or area (3D) of interface. This implies that domain coarsening
of a second order phase transformation, near the critical point, is essentially entirely driven by surface
curvature minimization. Moreover, the absence of any polynomial terms makes it possible to move
interfaces on all length scales with little energy. In Fourier space Eq. (4.52) has the solution ĥ ∼ e−q

2t,

where q is the wavevector. This leads to domain size scaling of the form ∼
(
qt1/2

)2
.

4.8.2 Model B

The dynamics of an interface evolving under model B dynamics is considerably more complex then those
of model A. Since model B is conservative, interface motion must evolve in a coupled fashion with the
diffusion in the bulk phases. The complete description of model B interfaces constitutes what is referred to
as a ”sharp interface” model. These types of models comprise two boundary conditions relating the local
interface velocity with local interface curvature. The boundary conditions are self-consistenlty coupled
to a diffusion equation for the order parameter in the bulk. Models such as these are commonly used
to describe diffusion limited growth of interfaces in pure materials and alloys. The first of the boundary
conditions is the well-known Gibbs-Thomson condition, which relates the change of concentration at
the interface from its equilibrium (i.e. stationary, flat interface) value to the local curvature (κ) and
normal interface velocity (Vn). The second boundary condition is a relationship between Vn and the net
mass flux crossing an interface along the normal direction. For thermally controlled microstructures, the
appropriate sharp interface equations are given by Eqs. (1.1). This is discussed further in Chapter (5).
In alloys, the appropriate sharp interface model are are reviewed in section (6.2.2) (see Eqs. (6.3)-(6.5)).
Their derivation from model B is shown in Ref. [66] in using a so-called first order perturbation analysis.
They are also derived in Appendix (C) using a more general, second order perturbation analysis of an
alloy phase field model, which admits both compositional and solid-liquid interfaces.

4.9 Numerical Methods

From the theoretical discussion thus far it should start becoming clear that the vast majority of non-linear
models of any importance can be solved exactly analytically. The machinery of numerical modeling is
required to explore its full range of complexity. This section introduces some numerical procedures for
simulating model A and model B type equations studied in this chapter. It is recommended that readers
without previous experience in computational modeling read appendix (A) before reading the sections of
this book dedicated to numerical simulation. For simplicity only two spatial dimensions are treated. The
transition to three is presicely analogous in most cases.
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4.9.1 Fortran 90 codes accompanying this book

The CD that accompany this book contains codes (and references to codes) for reader to practice and
learn from. The names and directories of the codes on the CD are referenced in each chapter, at the
corresponding section dealing with numerical implementation.

Fortran 90 codes used for the simulations in this section are provided in subdirectories ”ModelA” and
”ModelB” of the folder ”codes”. The code modules comprise a main program file named manager.f90 and
separate modules for other tasks. For example, all variables are defined in the module variables mod.f90
while printing is done in the util mod.f90 module. The solver code is in solver mod.f90. Both codes read
input before commencing the simulation from a file called ”input”, whose entries have been defined as
comments in the input file itself. The code has been tested on a MacBook running Mac OS X version
10.5.6. It uses standard Fortran 90 and should run on any platform. It comes with a file called ”Makefile”,
which deals with the details of compiling and linking all program modules. To create an executable, simply
type ”make” in the same directory where the code field and ”Makefile” reside. Be sure to replace the
first line of the Makefile (i.e. F90 = /sw/bin/g95) with a path telling the operating system where your
fortran compiler is located. All codes are straightforward to write in C or any other language.

Finally, a Matlab M-file called surff.m is also included in the code directories. This enables surface
plotting to visualize a field of the form φ(i, j) in 3D. The M-file is run by typing surff(dim, skip,n1,n2)
in the Matlab command window, where dim = 1 reads the first column of the output file file produced
by the code, skip is the number of discrete time steps between printed output files and n1,n2 are the
starting and ending discrete time steps to plot, one at a time. All plots are shown momentarily and then
saved to a jpeg file labeled by the corresponding discrete time. Be sure to set the path in Matlab to
where the output files created by the solver codes reside. If this all sounds like a foreign language to you,
consult with your local system administrator.

4.9.2 Model A

Model A is simulated numerically by approximate φ(x, y, t) as a discrete representation that ”lives” on a
rectangular grid of points labeled by an index i = 1, 2, 3, · · · and j = 1, 2, 3, · · · in the x and y directions,
respectively (See Fig. (A.1) for a 2D schematic). Values of φ(x, y, t) on this grid are represented on a
computer by an array (matrix) of real numbers. The distance between grid points is assumed to represents
a small distance ∆x in the x-direction and ∆y in the y-direction. (In most of what follows it is assumed
that ∆x = ∆y for simplicity.) Similarly, time is made discrete by introducing a numerical length scale ∆t,
labelled by the index n = 0, 1, 2, · · ·. Dimensional time is measures as t = n∆t and space by x = (i−1)∆x
(same for y). As computer memory is always limited, a grid can only represent a domain of length L in
each spatial direction. This sets the maximum number of grid points in the numerical array to N = L/∆x
(it will be assumed for simplicity that L is chosen to be a multiple of ∆x).

The simplest way to advance the solution of Eq. (4.16) forward in time is known as an explicit method.
In this method the solution of φ at time t = (n + 1)∆t is determined entirely from that at t = n∆t,
starting with an initial condition of φ((i − 1)∆x, (j − 1)∆y, 0) over i, j = 1, 2, 3, · · ·N . 4 The discrete
equation used to update model A on a uniform rectangular grid is derived in Appendix (A), re-written
here as

φn+1(i, j) = φn(i, j) +
∆t̄

∆x̄2
∆̄2φn(i, j)−∆t̄

∂f (φn(i, j)))

∂φ
(4.54)

4For simplicity φ((i−1)∆x, (j−1)∆y, n∆t) will simply be written as φn(i, j)) where the latter form is actually referencing
the discrete array representation of φ(x, y, t) at the discrete time step n. Moreover, since fortran does not have a symbol
for φ, the nottion ”PSI” will be used in the code itself.
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where the scaled variables x̄ ≡ x/Wo, t̄ = Mt have been assumed. The notation ∆̄2φn(i, j) is short hand
for the discrete Lapacian operator 5

∆̄2φn(i, j) = φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1) + φ(i, j − 1)− 4φ(i, j) (4.55)

Equation (A.5)) can alternatively be used for a more isotropic Laplacian. The difference of the two
laplacian formulae is basially one of accuracy and becomes irrelevant as the numerical mesh spacing ∆x
becomes very small. Of course, part of the challenge of numerical modeling is to accurately simulate
phase field models with as large a ∆x as possible. The choice of numerical laplacian must be guided by
the type of equation being modeled and the degree of error that is acceptable.

Equation (4.54) comprises an iterative mapping and, as such, is only stable for sufficiently small time
steps. From Appendix (A) it can be deduced that the time step in the explicit time marching algorithm
of Eq. (4.54) is limited (in 2D) by the restriction

∆t̄ <
∆x̄2

4
(4.56)

The physical interpretation of this limitation is that it is not possible to advance a solution explicitly faster
than the inherent diffusion time of the problem. This is seen clearly by writing Eq. (4.56) in dimensionless
form as ∆t < ∆x2/(4W 2

φ/τ). Because the criterion in Eq. (4.56) come from linear stability theory (i.e.
it ignores the non-linear term), it is advisable to use a ∆t sufficiently smaller than the prescription in
Eq. (4.56) to avoid stability issues.

A basic algorithm for solving Model A numerically is shown in Fig. (4.4). There are four basic steps

Figure 4.4: Flowchart of algorithm to simulate Model A.

in this simple code design. The first is to define all relevant variables, such an an N×N array to hold the

5Where the ∆x̄2 has been omitted from Eq. (4.55) since it already appears in Eq. (4.54)).
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values of the phase field (call ”PSI” here), the mesh spacing (∆x, called ”dx”), model parameters, etc.
Parameters that change are best to be input at run time, either from the terminal or, a better practice,
to have them read in from a file. After that the initial conditions are to be set on the array PSI. The
third stage is to begin the ”time marching” forward in time using Eq. (4.54). This involves a ”do-loop”
structure in each of the indicies i and j of the array PSI(i,j). The final stage is to print out the field PSI
and any quantity calculated from it. The last two steps are embedded in a time loop that repeats this
excerise as many times as re needed to reach a certain point in the evolution of the φ (PSI) field. Note
that it is wise not to print field configurations at every time step. As the array sizes become larger, the
output files start to become huge and quickly fill up disc space. This is a trivial point that, however,
nearly every first time graduate student makes when they write their first code. In general learning good
data management will serve one in good stead later on.

Care must be taken in properly implementing boundary conditoons in the third stage of the algorithm
of Fig. (4.4). For example, if the array PSI is defined from 1 to N in ech index i and j (e.g. Real*8 :: PSI(
1 : N, 1 : N ) in F90 syntax) , the code will stop working properly when, at i = N or i = 1, the code asks
for the entry PSI(N + 1, j) or PSI(0, j) for some value of j. This will occur due to the laplacian formulae
Eq. (A.5) or Eq. (A.5), which involve nearest neighbours of the point i, j. The resolution to this problem
depends on the type of boundry conditions to be implemented. If periodic boundry conditions are to be
used, the system evolves as if it is on a 2D sheet wrapped arund on itself. Thus, what goes out one end
re-emerges on the other. The quickest and simplest way to implement periodic boundry conditions is to
define the array PSI as Real*8 :: PSI( 0 : N + 1, 0 : N + 1). The physical domain on which Eq. (4.54)
is defined is still 1 : N, 1 : N . However, before each discrete time step begins, the column i = 0 is made
a replica of the comumn i = N , the column i = N + 1 is made a replica of i = 1, and so on. In other
words, the following modification is made to PSI before each time step commences,

PSI(0, :) = PSI(N, :)

PSI(N + 1, :) = PSI(1, :)

PSI(:, 0) = PSI(:, N)

PSI(:, N + 1) = PSI(:, 1) (4.57)

Conversely, if one wishes to implement zero flux boundry conditions, the following mapping is made prior
to each time step,

PSI(0, :) = PSI(2, :)

PSI(N + 1, :) = PSI(N − 1, :)

PSI(:, 0) = PSI(:, 2)

PSI(:, N + 1) = PSI(:, N − 1) (4.58)

It is clear that where a so-called centered difference is used, Eq. (4.58) gives a zero flux at the left and
right ends of the system since, for exampe, ∂φ(i, j)/∂x ≈ PSI(i+ 1, j)− PSI(i− 1, j) and analogously
for the y direction. If a specific flux is to be specified, then 2∆xJBC is subtracted on the right hand side
of the appropriate line of Eq. (4.58), depending on which edge the flux is coming in from. This case is
discussed further in the next chapter. Note that this is not the most accurate way to implement flux
boundary conditions. They will do to et started. For more advanced methods the reader is referred to
more comprehensive texts on numerical modeling.

A simulation of model A is shown in Fig. (4.5). The order parameter φn(i, j) is evolved by simulating
explicit finite difference algorithm discussed above. The domain for the simulation on the left frame is
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1000× 1000 = 106 grid points. Periodic boundry conditions were used. The field φ0(i, j) was initially set
to a gaussian distributed random variable with zero mean and a standard deviation of 0.001. In other
words, φ0(i, j) exhibits only small deviations from zero and the average 〈φ0(i, j)〉 = 0. The right frame
shows a time slice in 400× 400 system. The random initial conditions of the smaller simulation were set
using the same nitialization seed of the random number generator used in the larger system. The free
energy density of Eq. (2.39) was used for f(φ) with a2 = −1, a4 = 1, W 2

φ = 0.25, ∆t = 0.1 and ∆x = 0.8.
Blue regions represents one minimum of f(φ) and brown the other.

Figure 4.5: (left) Simulation of model A on a domain of size 1000× 1000. (Right) Analogous simulation
of model A on a 400 × 400 domain (whose dimensions are indicated in yellow on the left frame, for
comparison). Blue represents one minimum of the double well potential f(φ) and brown the other.

The two frames of Fig. (4.5) appear self similar to each other, which means that the zoomed in region
of the boxed portion of the left frame is a statistical replica of the larger domain. Since an initial state
close to φ = 0 is unstable below the transition temperature, it is equally likely that some domains will
”fall into” one minimum of the double-well free energy density and some in the other. Thus, it may
be expected that φ will evolve such that its average 〈φ〉 = 0. This is not the case in practice, however.
Figure (4.6) plots 〈φ〉 versus time for systems comprising 250×250, 400×400, 1000×1000 and 2000×2000
mesh points on a square grid. It is clear that for the smaller system sizes, the magnitude of 〈φ〉 drifts,
asymptotically attaining a constant value, the latter of which approaches zero very slowly with increasing
system size.

The reason for this so-called ”finite-size effect is better understood if one considers that Model A
does not conserve 〈φ〉. As a result there there can be a drift as a function of time as domains try to
minimize their surface area. Physically, this occurs because the selection of domain sizes is cut off for
sizes greater than the size of the system. In other words, the distribution of domains that would give
an average of zero is cut off due to the finite size of the simulation domain. Only in the thermodynamic
limit of infinite –or at least very large– system sizes will the asymptotic average 〈φn(i, j)〉 go to zero, as
seen in the 2000× 2000 simulation. In the case of a ferro-magnet this is why a small bias field is required
to selet a net magnetization.

Theoretical work by Ohta, Kawasaki and Jasnow [163] has shown that in model A the system becomes
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Figure 4.6: System size dependence on average of the order parameter φ for Model A simulations on a
of 2502, 4002, 6002 and 10002 grid points. Simulations were seeded with random fluctuations using the
same random number seed. The 6002 and 10002 cases were run a little longer to show a clearer saturation
to a smaller value than the other two systems.

self-affine. This property is characterized by the structure factor (see Eq. (4.23) in section (4.6.1), and
section (B.1) for definition), which can be shown to obey the following relation,

S(q, t) = td/2S
(
qt1/2

)
(4.59)

where q ≡ |~q| is the wave vector and S(u) is a universal function that is independent of the specific
form of the free energy entering model A. These matters are beyond the scope of this book and will
not be discussed further here. The interested reader is referred to the original reference cited above and
references therein.

4.9.3 Model B

Numerical simulation of model B follows requires an additional step in the algorithm discussed above
for model A. Specifically, a two step approach is now required in the update step in the pseudocode of
Fig. (4.4). The order parameter update step becomes

φn+1(i, j) = φn(i, j) +
∆t̄

∆x̄2
∆̄2µn(i, j) (4.60)

where an additional step (i.e. do-loop) must be added, prior to updating φn+1(i, j), which evaluates the
array µn(i, j) (MU(i,j) in fortran syntax) for the nth time step representation of the discrete chemical
potential. The array for µn(i, j) is explicitly computed by

µn(i, j) = −∆̄2φn(i, j)

∆x̄2
+
∂f (φn(i, j)))

∂φ
(4.61)
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As with model A the mapping in Eq. (4.60) is only stable below a threshold time step. In two dimensions,
the the restriction on the time step is given by

∆t̄ <
∆x̄4

32
(4.62)

This is more severe than the case of model A due to the ∆x4. The reason, as shown in Appendix (A),
is that the extra ∆x2 emerges is due to the extra laplacian in the conservation law of model B. Equa-
tions (4.60) and (4.61) can be integrated effectively with the numerical Laplacian in Equation (A.5)) (or
using finite volumes, discussed in Section (A.2)). Both methods will yield 〈φ(~x, t)〉 = 0, withing machine
precision, for all times, if 〈φ(~x, t = 0)〉 = 0.
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Chapter 5

Introduction to Phase Field
Modeling: Solidification of Pure
Materials

This chapter extends the basic phenomenology of phase field theory into a more formal methodology
for modeling isothermal and non-isothermal solidification in pure materials. Solidification serves as an
important paradigm for many first order phase transitions and is the principal phenomenon describing the
first stage of nearly all microstructure formation in metals. Solidification is also one of the most extensively
studied topics using phase field methodology in the scientific literature. In pure materials, solidification
proceeds through the competition between thermodynamics –driven by the local undercooling of the
liquid ahead of the solidification front– and the ability of the system to diffuse latent heat of fusion
(solidification is an exothermic reaction) away from the solid-liquid interface. Capturing the physics of
this phenomenon thus requires combining an equation that describes the change of order to one that
describes the diffusive processes accompanying solidification, such as in heat conduction in this case. The
chapter starts off by introducing the concept of order parameters in crystal phases. Following this, the
phenomenology of a phase field model for solidification of a pure material is derived.

5.1 Solid order parameters

Figure (5.1) shows a cartoon of a cut through a hypothetical solid in co-existence with its liquid. The
oscillating curve denotes the time-averaged atomic number density. This is the field that an atomic force
microscope might reveal if imaging a hypothetical 1D sold. The decay to a constant density in the liquid
occurs over a correlation length Wφ, which is atomically diffuse in most metals. The atomic number
density can be seen as a temporal or ensemble average 1 of the instantaneous solid density, ρ(~x, t), i.e.

1This assumption assumes that the system is ergotic. This implies that averaging a quantity in time as the system traces
a trajectory in its phase space (defined by its co-ordinates and momenta) is equivalent to averaging the same quantity over
the system’s equilibrium distribution [147]. This assumption usually satisfied by most systems in the thermodynamic limit
but it is not always for low dimensional dynamical systems.
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Figure 5.1: Schematic of the atomic density field of a 1D cut through a solid (oscillating line) in coexistence
with liquid (constant). The decay of oscillating density to a constant occurs over a length scale Wφ

〈ρ(~x, t)〉time = 〈ρ(~x, t)〉ensemble. The instantaneous density itself is given by the expression.

ρ(~x, t) =

N∑
n=1

δ(~x− ~xn(t)) (5.1)

where δ(~x) is the Dirac delta function, N is the number of particles in the solid and ~xn(t) denotes the
position of the nth particle. The delta function has units of V −1, where V is the volume of the system.

It will be assumed, for simplicity, that the density field ρ(~x, t) can be represented by discrete Fourier
transform,

ρ(~x, t) =
∑
~G

ρ̂~G(t) e−i
~G·~x + c.c. (5.2)

where ~G defines the principle reciprocal lattice vectors of the solid and c.c. the complex conjugate 2. To
simplify the math, the complex conjugate will be assumed but not dealt with explicitly in the derivation

below. The Fourier transform ρ̂~G can be obtained by multiplying Eq. (5.2) by ei
~G·~x and integrating over

the volume of the solid,

ρ̂~G =

∫
ρ(~x, t) ei

~G·~xdV (5.3)

(where the time label has been suppressed for simplicity). Substituting Eq. (5.1) into Eq. (5.3) gives ρ̂~G
in the form,

ρ̂~G =
ρ̄

N

N∑
n=1

ei
~G· ~xn(t) (5.4)

where ρ̄ is the average atomic number density. Substituting Eq. (5.4) into Eq. (5.2) gives an alternate
form for the density field,

ρ(~x, t) =
ρ̄

N

∑
~G

(
N∑
n=1

ei
~G· ~xn(t)

)
e−i

~G·~x (5.5)

2One can also begin by assuming that time average of the density is periodic and follow similar steps as above and arrive
at the same answer
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The phase factors (complex exponential terms) in the round brackets of Eq. (5.5) are called structure
factors. These are intimately connected to the solid’s crystalography and its order parameters.

This significance of the structure factors in Eq. (5.5) can be made more concrete by using Eq. (5.5)
in the definition of the time-averaged density,

〈ρ(~x, t)〉time = 〈ρ(~x, t)〉ensemble =
ρ̄

N

∑
~G

〈
N∑
n=1

ei
~G· ~xn(t)〉︸ ︷︷ ︸

φ~G

e−i
~G·~x (5.6)

The quantities φ~G define the order parameters of the solid –one for each reciprocal lattice vector ~G. In the

solid, the dot product ~G ·~xn(t) will take on multiples of the same values along given directions and so the
average will collect non-zero contributions from all n, since atoms are situated near ideal crystallographic
positions; this is like constructive interference. In the liquid the phases ~G · ~xn(t) will vary randomly and
the phase factors will thus destructively interfere to make the ensemble average of structure factors zero.
As an example, consider a one dimensional solid, i.e.

〈 ei ~G·~xn〉 ≡ 〈cos

(
2mπ

a
(n+ ξ)a

)
〉+ i〈sin

(
2mπ

a
(n+ ξ)a

)
〉 (5.7)

where ~G = 2πm/a are the 1D reciprocal lattice vectors (m is an integer), a is the lattice constant and
xn = (n + ξ)a, with n being some integer associated with the nth atom in the crystal. The variable ξ
represents a Gaussian random number with zero mean. It represents a source of noise causing atom n
to randomly vibrate about the position x = na due to temperature fluctuations. Splitting up the sin
and cos functions, to lowest order 〈sin(2πmξ)〉 = 0 and 〈cos(2πmξ)〉 ≈ 1 since 〈ξ〉 = 0, and noting that
sin(2πmn) = 0 and cos(2πmn) = 1 gives,

〈 ei ~G·~xn〉 ≡ cos(2πmn)〈cos(2πmξ)〉+sin(2πmn)〈sin(2πmξ)〉
+ i cos(2πmn)〈sin(2πmξ)〉+sin(2πmn)〈cos(2πmξ)〉
≈ 1 (5.8)

In the liquid, the position xn will itself be an uncorrelated random variable, unlike in the solid where it

is always near a lattice position 3. As a result 〈 ei ~G·~xn〉 = 0 in the liquid. As a result, the parameter

φ~G ≡ 〈ρ̂~G〉 = 〈
∑
n ei

~G·~xn〉 is a constant in the solid (φ~G ∼ N , since there are N atoms in its sum) and
decays to zero in the liquid. Its behaviour is illustrated schematically in Fig. (5.2). It is noted that the
~G = 0 is treated separately in the outer sum of Eq. (5.6). It merely adds a constant N to the sum, since

the phase factors ei
~G·~xn are always zero for the ~G = 0 mode.

Taking the above considerations into account, the ensemble or time averaged atomic number density
field in Eq. (5.6) can be written in terms of φ~G as

〈ρ(~x, t)〉 = ρ̄

1 +
1

N

∑
~G 6=0

φ~Ge
−i ~G·~x

 (5.9)

3It is noted that there is a temperature dependence in Eq. (5.8), if we expand to second order in ξ. This is ignored here
for simplicity.
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Figure 5.2: Schematic of solid order parameter corresponding to a reciprocal lattice vector ~G.

In general the average density ρ̄ changes from solid to liquid. The association of this quantity with the
symbol φ~G is intentionally made to associate it with the order parameter of Ginzburg-Landau theory
studied in previous chapters. In the examples examined thus far, only one real order parameter was
considered. The above derivation shows that, in fact, multiple complex order parameters are required
to describe a solid completely, due crystallographic properties of crystals. The density in Eq. (5.9)
represents the course-grained density filed, where spatio-temporal variations on phonon time scales have
been ”washed” out by the averaging process. The order parameters φ~G thus vary over length scales that
are long compared to the solid liquid interface width, and change on long time scales compared to those
involved in lattice vibrations. This density can loosely speaking be considered as a pseudo-equilibrium
density on mesoscopic time scles.

5.2 Free Energy Functional for Solidification

Statistical thermodynamics provides a formalism called classical density functional theory through which
a free energy functional for solidification can be developed in terms of 〈ρ(~x, t)〉[178, 73, 112]. The basic
idea is that the free energy expanded in an infinite functional series of the form,

F [〈ρ(~x)〉, T ] = Fref [ρ̄] + Floc(〈δρ(~x)〉)− 1

2

∫
V

〈δρ(~x)〉C(2)(|~x− ~x′|)〈δρ(~x′)〉+ · · · (5.10)

where Fref [ρ̄] is the reference free energy of a liquid or gas phase with average density ρ̄ and evaluated at
solid-liquid coexistence. The free energy Floc(〈δρ(~x)〉) is a local function of the density difference from the
reference density, while the function C(2)(|~x − ~x′|) is the so-called two-point direct correlation function
[112]. Loosely speaking, this function represents a statistical averaging of all two-body interactions in
the system. Equation (5.10) is a truncated density functional, cut off at second order. By specializing
C(2), various atomic scale phase field theories of crystallization can be obtained. For example, the form
C(2) = a + b∇2δ(~x − ~x′) + ∇4δ(~x − ~x′) gives rise to a so-called phase field crystal (PFC) model, an
adaptation of the well-known Swift Hohenberg equation, re-interpreted by Elder et. al [67] to describe
elastic and plastic phenomena in metallic systems. This is a phase field model whose order parameter
varies on atomic scales, and can self-consisently model elasticity and plastic properties of solids. Phase
field crystal theory will be the focus of chapters (8) and (9).
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It is possible to homogenize or ”course-grain” the free energy of Eq. (5.10) into an effective free energy
that is valid on scales much larger than a single atom but still small enough to resolve metallurgically rel-
evant microstructures. Loosely speaking, course graining proceeds by assuming density can be described
by Eq. (5.9), which is then substituted into Eq. (5.10). It is then assumed that the order parameters φ~G
vary on long length scales compared to the periodic variation of ei

~G·~x. This makes it possible to integrate
out these atomic-scale periodic variations , thus “coarse graining” the free energy in Eq. (5.10) into a new
form that depends only on the complex order parameters φ~G. This coarse-graining procedure is denoted
symbolically as

F [〈ρ(~x)〉, T ]→ F̃
[
{φ~G}, T

]
(5.11)

A more detailed discussion of the properties of F̃
[
{φ~G}, T

]
will be given in chapter 8. The basic idea

for now is that F̃
[
{φ~G}, T

]
can be seen as a type of Ginzburg-Landau free energy functional, defined

in terms of multiple complex order parameters. It turns out that the ability to express the fee energy
functional in terms of as multiple complex order parameters makes it possible to self- consistently include
all elastic and plastic effects in the description of microstructure evolution (i.e. strain, dislocations and
grain boundaries).

In solidification, which occurs at high temperatures in metals, elasto-plastic effects are often negligible.
In this case, the simplest description of the solid is in terms of single real order parameter, φ, which has
an analogous meaning to the order parameters discussed in the previous chapters. Assuming that the
complex order parameters φ~G are all real, and equivalent, further reduces F̃

[
{φ~G}, T

]
to depend only on

φ. This is symbolically represented by

F̃
[
{φ~G}, T

]
→ F̂ [φ, T ] (5.12)

The remainder of this chapter will consider the construction of a single order parameter model F̂ [φ, T ]
for the specific example of solidification of a pure material 4.

5.3 Single Order Parameter Theory of Solidification

As discussed above, the simplest description of solidification of a single crystal of pure material, it is
reasonable to assume that all ~G’s are the same, in which case the free energy in Eq. (5.11) becomes a
single order parameter theory. This simplification precludes the study of grain boundary interactions and
elastic and plastic effects. While the latter are not so important during solidification where temperatures
are relatively close to the melting temperature, the former are crucial for the study of polycrystalline
solidification. Nevertheless, a single order parameter theory is the first step for understanding the details
of dendritic solidification, the precursor to grain boundary interactions and solid state reactions. It also
provides a valuable pedagogical tool from which to build up more complex phase field models.

The simplest free energy functional for solidification for a pure materials is the familiar form

F [φ, T ] =

∫
V

{
1

2
|εφ∇φ|2 + f(φ(~x), T )

}
d3~x (5.13)

4The formalism developed thus far has treated φ as fundamental parameter. Going forward it will sometimes be
convenient to relax this assumption somewhat and treat φ as a phenomenological parameter that serves to modulate the
free energy functional between two phases [138]. This freedom will make it easier to “manually” construct phase field models
that emulate well-known sharp interface kinetics of microstructure evolution.
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where T is the temperature, considered in this section as constant and εφ is the gradient energy coefficient

setting the scale of the surface tension 5. The hat above F̂ has been dropped for simplicity. The gradient
energy term has the same interpretation as in previous examples, describing the energy density across
the interface defined by the order parameter. The magnitude of the surface energy scales with the
energy density εφ. This coefficient will be shown below to be related to scale of the interface width
(hereafter denoted Wφ in solidification models) and nucleation barrier (denoted H herefater) according

to εφ =
√
HWφ. In solidification the order parameter is usually taken to be zero in the liquid phase and

finite in the solid, since it is a true order parameter in this phenomenon and should reflect the vanishing
of any crystallographic order in the liquid. 6

The bulk free energy f(φ, T ) for solidification is postulated, once again, by invoking Eq. (2.38) up to
fourth order in φ and first order in T − Tm where Tm is the melting point at a given average density,

f(φ, T ) = fL(T ) + r(T )φ2 + w(T )φ3 + u(T )φ4 (5.14)

The first order term has been dropped since it would be not possible to have φliquid = 0 otherwise.
To proceed, the coefficients r(T ), w(T ), u(T ) and fL(T ) are expanded to linear order in temperature,

around Tm. This gives

f(φ, T ) = fL(Tm) +
dfL

dT

∣∣∣∣
Tm

(T − Tm)

+ r(Tm)φ2 + w(Tm)φ3 + u(Tm)φ4 + (B2 +B3φ+B4φ
2)φ2(T − Tm) (5.15)

where B2, B3 and B4 are the first derivatives of r(T ), w(T ) and u(T ), respectively, evaluated at T =
Tm. The coefficients r(Tm), w(Tm) and u(Tm) can be inter-related by demanding that at T = Tm
the resulting polynomial in φ has two stable minima, with equal free energies and an activation energy
barrier separating these two states. This is accomplished by setting r(Tm) = u(Tm) = H(Tm) and
w(Tm) = −2H(Tm), where H(Tm) is a constant that depends on the melting temperature. With these
choices the bulk free energy of the pure material reduces to,

f(φ, T ) = fL(Tm)− SL(T − Tm) +Hφ2(1− φ)2 + (B2 +B3φ+B4φ
2)φ2(T − Tm) (5.16)

where SL ≡ − dfL/dT |Tm is the bulk entropy density of the liquid phase. The polynomial g(φ) = φ2(1−φ)2

can easily seen to be a humped function with minima at φ = 0 and φ = 1, and symmetric around φ = 1/2.
The constant H controls the height of an energy hump that forms an activation barrier between the two
phases at the melting temperature. The characteristic form of this function often leads it being called a
”double-well” potential. It turns out that any function featuring the same double-well structure can also
be used for g(φ).

The polynomial in φ multiplying the T − Tm term must be chosen such that it interchanges the
stability of the two stable states of f(φ, T ) relative to each other above or below the melting temperature
Tm. Specifically, the solid state should have a higher free energy than the liquid above Tm and a lower
free energy than the liquid below Tm. These considerations are satisfied by setting

B2 = 3
L

Tm
, B3 = −2

L

Tm
, B4 = 0 (5.17)

5In this and later chapters, the symbol εφ, rather than Wo, will hereafter be associated with the gradient energy coefficient
of the φ-field, and ε will be reserved to denote a small parameter used in perturbation analyses.

6The models derived as examples here can easily be modified to allow the order parameter to interpolate between other
values in the solid and liquid. For example, many popular models in the literature scale φ from −1 to 1 in the liquid and
solid, respectively.
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where L is the latent heat of fusion. This choice of constants makes the free energy

f(φ, T ) = fL(Tm) +Hφ2(1− φ)2 − S(φ)(T − Tm) (5.18)

where

S(φ) = SL −
L

Tm
(3− 2φ)φ2 (5.19)

The form of the bulk free energy f(φ, T ) is particularly convenient in that the stable states of the order
parameter –determined by ∂f(φ, T ))/∂φ = 0– are given by φs = 1 and φL = 0. Moreover, it takes on the
limits S(φ = 0) = SL and S(φ = 1) = SL − L/Tm. Figure (5.3) shows a plot of ∆f ≡ f(φ, T )− fL(T ).

� 

Δf (φ,T)

� 

T > Tm

� 

T = Tm

� 

T < Tm

� 

φL

� 

φs

� 

φ

Figure 5.3: Free energy in Eq. (5.18) above, below and at the melting temperature. Energy is plotted
relative the liquid free energy fL(T ) ≡ f(φ = 0, T ).

5.4 Solidification Dynamics

5.4.1 Isothermal solidification: model A dynamics

Following the hypothesis of dissipative dynamics and the fact that the order parameter in solidification
is a non-conserved quantity (i.e. an undercooled liquid can all crystalize), the simplest equation for the
evolution of the order parameter is constructed by considering the variational of Eq. (5.13) as a driving
force for the phase transformation, i.e.

τ
∂φ

∂t
= − 1

H

δF [φ, T ]

δφ
+ τξ(~x, t)
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= W 2
φ∇2φ− dg(φ)

dφ
− L(T − Tm)

HTm

dP (φ)

dφ
+ η(~x, t) (5.20)

where the parameters τ = 1/HM and Wφ = εφ/
√
H have been defined. The functions g(φ) = φ2(1−φ)2

and P (φ) = (3−2φ)φ2. Meanwhile, η = τξ is a re-scaled stochastic noise term. The statistics of ξ satisfy
the fluctuation-dissipation theorem in Eq. (4.19). This model can simulate the growth of isothermally
growth crystals. The initial conditions can be a liquid phase (φ = 0) seeded with a crystal of solid (φ = 1)
and the temperature T < Tm.

Equation (5.20) is similar in form as Model A studied in section (4.4). An important difference in this
case, however, is that the free energy has been constructed to be asymmetrical, with the minima in the
solid and liquid energies switching relative to one another at the melting temperature Tm. The tilting
in this way is demanded by thermodynamics and is represented by the function P (φ), which is odd in
φ. This is to be contrasted with the case studied previously where the free energy was symmetrical with
respect to the two phases since the transition from one state (above Tc) to two (below Tc) occurred via
the second order term in φ.

5.4.2 Anisotropy

In its current form, the phase field model in Eq. (5.20) cannot simulate anisotropic growth forms, such
as dendrites. One of the most significant contributions to solidification that came out the late 1980’s and
1990’s was the so-called analytical theory of solvability (see section (5.8.1)), where the Stefan problem
of Eq. (1.1) was solved analytically and numerically, demonstrating that dendrites can only grow along
specific crystallographic directions if surface tension is anisotropic. In fact an isotropic surface tension
can only lead to isotropic structures. This was later quantitatively demonstrated with phase field models
[114, 171], which introduced anisotropy into surface energy by making the gradient energy coefficient
Wφ and interface attachment kinetics time τ functions of the angle of the local interface normal n̂.
Specifically, the gradient energy term in the free energy functional and kinetic attachment time in the
phase field dynamics become

1

2
W 2
φ |∇φ|2 → (1/2)|W̃ (θ)∇φ|2 = (1/2)W̃ 2(θ) |∇φ|2

τ → τ̃(θ) (5.21)

where

θ = arctan

(
∂yφ

∂xφ

)
= arctan

(
n̂y
n̂x

)
(5.22)

defines the angle between the direction normal to the interface (n̂ = −∇φ/|∇φ|) and a reference axis.
Applying Eq. (3.13), and using these definitions, the anisotropic phase field equation becomes

τ̃(θ)
∂φ

∂t
= − 1

H

δF [φ, T ]

δφ
+ η′(~x, t)

= ∇ ·
(
W̃ 2(θ)∇φ

)
− ∂x

[
W̃ (θ)W̃ ′(θ)∂yφ

]
+ ∂y

[
W̃ (θ)W̃ ′(θ)∂xφ

]
− dg(φ)

dφ
− L(T − Tm)

HTm

dP (φ)

dφ
+ η′(~x, t) (5.23)
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where W̃ ′(θ) denotes the derivative of W̃ (θ) with respect to θ. A convenient choice for the describing the
anisotropy is

W̃ (θ) = WφA(θ)

τ̃(θ) = τA2(θ) (5.24)

where the function A(θ) modulates the anisotropy of the interface width and interface kinetics time. The
reason for the particular relationship between W̃ (θ) and τ̃(θ) is required to be able to model zero interface
kinetics in the limit of a diffuse interface. This will become clear below.

A convenient form for A(θ) that is often used in the literature for square symmetry is

A(θ) = (1− 3ε4)

{
1 +

4ε4
1− 3ε4

(
cos4(θ) + sin4(θ)

)}
(5.25)

where ε4 describes the degree of anisotropy of the surface tension (or surface energy), with ε4 = 0
corresponding to the isotropic situation, defined by the length scale Wφ and time scale τ . This form of
A(θ) was chosen to be able to model an anisotropic capillary length of the form

do(θ) = diso
o (−15ε4 cos(4θ)) , (5.26)

where diso
o is the isotropic capillary lentgh. In terms of W (θ) becomes d(θ) = diso

o

(
A(θ) +A

′′
(θ)
)

.

5.4.3 Non-isothermal solidification dynamics: Model C

In most cases of practical interest treating temperature isothermally –or even uniformly– is not a good
approximation. Model A dynamics of section (5.4.1) can be augmented to consider non-isothermal tem-
perature evolution by allowing the constant temperature T → T (~x, t), where t is time and ~x is a position
vector. The temperature evolves such that the flux of heat into a volume element lead to a corresponding
change of entropy. This is expressed in the form of an entropy production equation [45, 20]

T
∂S

∂t
+∇ · ~Je = 0 (5.27)

where ~Je is the entropy flux. If mass transport and convection are neglected ~Je ≈ ~J0 in Eq. (4.3).
Moreover, Eq. (5.27) becomes the same as Eq. (4.7) with the substitution

TdS = dQ = dHp (5.28)

where dHp denotes the enthalpy at constant pressure. The enthalpy can be interpolated between phases
via the order parameter as

Hp = ρCpT − ρLfh(φ) (5.29)

where Cp is the specific heat at constant pressure, ρ is the density of the material, and Lf is the latent
heat of fusion for the liquid solid reaction. Here [Cp] = J/kg-K, [ρ] = kg/m3 and [Lf ] = J/kg. The
function h(φ) assumed to be some smooth function with limits h(0)) = 0 and h(1) = 1. It has been
added to describe the generation of excess heat production if solid (φ = 1) phase appears. In the liquid,
where φ = 0, the enthalpy is due only to temperature changes. In the solid, where φ = 1, the enthalpy is
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reduced due to latent heat. The variation of h(φ) for 0 < φ < 1 corresponds to the solid-liquid interface.

Substituting Eq. (5.29) into Eq. (5.28), TdS into Eq. (5.27) and making the replacement ~Je → ~J0 gives

ρCp
∂T

∂t
− ρLfh′(φ)

∂φ

∂t
= −∇ · ~J0 (5.30)

(where h′ ≡ dh/dφ). If convection effects are ignored the heat flux is ~J0 = −k∇T , where k is the thermal
conductivity of the material and has the form of Eq. (4.8). This leads to Fourier’s law of heat conduction,
modified for changes of phase through the order parameter φ. The conductivity can made a function
of the phase by expressing it as k = kLq(φ), where q(φ) is an unknown function that interpolates the
conductivity across the solid-liquid interface.

Combining Eq. (5.30) with Eq. (5.23) gives a system of two coupled partial differential equations for
the evolution of the order parameter (φ) and the temperature (T ),

τA2(θ)
∂φ

∂t
= W 2

φ∇ ·
(
A2(θ)∇φ

)
− ∂xW 2

φ [A(θ)A′(θ)∂yφ] +W 2
φ∂y [A(θ)A′(θ)∂xφ]

−dg(φ)

dφ
− L(T − Tm)

HTm

dP (φ)

dφ

∂T

∂t
= ∇ · (α∇T ) +

Lh′(φ)

cp

∂φ

∂t
(5.31)

where α ≡ k/ρCp is the thermal diffusion coefficient and h′(φ) denotes the derivative of h(φ) with respect
to φ. It is noted that L = ρLf and cp = ρCp. As shown in section 5.6 this model can be recast in a
form known as “Model C” [93]. we will for simplicity, therefore, refer to it as “model C” below. Many
of the relevant physics of solidification of pure materials can be well described without too much error
if the thermal diffusion coefficient α is made a constant. As will be discussed in future sections, this
simplification also greatly simplifies the efficiency with which model C may be simulated so as to capture
the kinetics of the sharp interface model in Eqs. (1.1). Furthermore, as with the φ equation there should

strictly also be thermal noise sources added to the heat flux, i.e. ~Je → ~Je + ξe. Its statistics must satisfy
the fluctuation-dissipation theorem as well. Generally, thermal fluctuations are very important near a
critical point, where interfaces become diffuse. For first order transformations such as solidification, the
noise plays a major role during nucleation and the formation of side-branches [115] but does not strongly
influence the stability near the dendrite tip region. The effects of stochastic noise have been examined in
detail by Elder and co-workers [65] and Sekerka and co-workers [165, 166].

An early, isotropic, variant of the model C for solidification described above was used by Collins and
Levine [53] and studied in detail by Caginalp [37]. The specific model of Eqs. (5.31) is the same as models
developed by Sekerka and co-workers in the early 90’s [151, 17, 200, 199]. It is more thermodynamically
consistent than the older models in its formulation but contains the same physics. In all cases the basic
ingredients required are an order parameter –or phase field– equation that effectuates phase changes
(solidification or melting) driven –via temperature– by a relative tilting of the solid and liquid free energy
wells.

Comparing the various models in the literature to Eq. (5.20) one immediately notices differences in
the specific form of the functions g(φ) and P (φ). These functions are known as as interpolation functions
since they interpolate between bulk thermodynamic values of the free energy of the solid (φ = 1) and
liquid (φ = 0). Their form at intermediate values of the order parameter (0 < φ < 1) captures the
fundamental properties the boundary layer structure of the solid-liquid interface. In principle they can
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be deduced from first principles using classical density functional theory or molecular dynamics, or even
fit using data from electron microscopy. To date there has not been much work to derive the precise form
of these functions. Indeed, as will be discussed in the next section, insomuch as the phase field model can
be considered a ”tool” for emulating sharp interface kinetics (e.g. Eqs. (1.1)), the precise form of these
interpolation functions is immaterial.

5.5 Sharp and Thin Interface Limits of Phase Field Models

One of the most subtle but important issues regarding the use of phase field models in quantitative
simulations of microstructure phenomena is the ability of models such as that descried by Eqs. (5.31)
to properly emulate the kinetics of sharp-interface models, such as the one, for example, described by
Eqs. (1.1). These models generally define the limits of classical field theories in regimes where the interface
can be considered sharp, its properties subsumed into effective properties in the sharp interface model.
In solidification, this occurs when the undercooling or cooling rates are sufficiently low that the interface
can be assumed to be negligible compared to the other length scales (e.g. diffusion length, radius of
curvature of a dendrite, etc.). In this limit it is also reasonable to assume that the interface is in local
equilibrium, corrected for by curvature effect described by the so-called Gibbs-Thomson conditions [168].

Two approaches for this have evolved through the years for choosing the interpolation functions and
parameters of model C in Eqs. (5.31). The first is to operate in the physical limit where the interface
width of the phase field becomes vanishingly small, i.e. Wφ → 0 or in more appropriately, Wφ � do (here
do is the thermal capillary length). This known as the sharp-interface limit was pioneered by Caginalp
and co-workers in the late 80’s and early nineties [38, 39, 40]. The second approach aims to keep the
interface diffuse, so long as properties arising from its having a finite size do not affect properties on
the long length and times scales described by sharp interface theories, i.e., Wφ � α/vs, where vs is a
characteristic interface speed. This makes it possible for equations (5.31) to emulate the sharp interface
model of Eqs. (1.1) even when Wφ/do is on the order unity. This is referred to as the thin interface limit
and was recently introduced by Karma and co-workers [114, 113, 59, 76] by modifying a second order
thin interface analysis introduced by Almgren [10].

The idea of mapping phase field models onto effective sharp interface models –known as asymptotic
analysis– is illustrated in Figure (5.4). The figure shows a snapshot in time of the phase field φ(x) and
reduced temperature U ≡ cp(T−Tm)/L across the interface of a solidifying front. The dashed lines are the
projections of the phase field solutions onto those of the equivalent sharp interface model. When Wφ 6= 0
the phase field model must be constructed such that the local velocity and values of temperature (or
concentrations in the case of alloys), when projected onto a hypothetical sharp interface, are equivalent
to the corresponding values obtained if the precise sharp interface model itself was used. Thus, in the
limit ε ≡Wφ/(α/vs)� 1, Wφ ∼ do and α/vs large, the model should thus yield the same results as when
Wφ � do and α/vs small, i.e., the sharp interface limit.

The difference between the sharp and thin interface limits of a phase field model is extremely significant
as far as numerical efficiency is concerned. The sharp interface limit is impractical to simulate numerically,
since the grid resolution and time scale of the phase field model are both scaled with the width of the
interface, simulating a phase field model in the sharp interface limit is completely impractical with current
computing. In contrast, the use of thin interface (i.e. small compared to the scale of microstructure
but still comparable to or larger than the capillary length) allows the time scale of simulations to be
accelerated dramaticaly. When combined with efficient adaptive mesh refinement algorithms [171], phase
field simulations of microstructure formation can now be conducted in reasonable times.

61



Figure 5.4: Schematic of the order parameter, reduced temperature fields and their projections to a
sharp interface. Diffuse or ”thin-interface” solutions of the phase field model become equivalent to the
corresponding sharp-interface solutions when projected onto a sharp interface (denoted by the dashed
lines) from the outside the interface region, of width Wo.

In practice, the mathematics of extracting a sharp interface model from the phase field equations is
rather messy and complex. The basic idea is to rescale the equations in two ways. The first scales the
phase field equations such that space is scaled by a diffusion length, which controls patterns that occur on
scales much greater than Wo. It is then assumed that the solutions of the phase field equations in the outer
region can be expanded in an infinite series in a small small parameter, ε, e.g. φ = φ0 + εφ1 + ε2φ2 + · · ·
and U = U0 + εU1 + ε2U2 + · · ·. This solution ansatz is substituted into the phase field equations and
terms of similar order of ε are grouped into distinct equations. A similar exercise is done when the phase
field equations are re-scaled so that space is scaled by the interface width Wo. The final –and messiest–
part of the procedure is to match the inner and outer solutions so that they overlap at approximately the
scale of the boundary layer introduced by the phase field φ. A procedure of a formal matched asymptotic
analysis of a generic version of Model C is shown in detail in Appendix (C). The next section discusses
the results of that analysis for the special case of the Model C in Eqs. (5.31) for a pure materials, which
was developed in this chapter.

5.6 Case Study: Thin interface analysis of Equations (5.31)

This section works through a concrete example that illustrates the details of selecting the parameters of
model C such that it operates in the thin interface limit. Specifically, it summarizes the relation between
the parameters of Eqs. (5.31) and the effective sharp interface coefficients one would use if studying
solidification of a pure substance from the perspective of a sharp interface model introduced at the start
of this book. In particular, two sharp interface parameters are required for to make contact between
the two models in simulations; the capillary length (do) and interface kinetics coefficient (β). To arrive
at these, the phase field equations must first be re-cast in the form of the generic phase field model C
analyzed in Appendix (C), after which the the recipes of the appendix can be brought to bear on the
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parameters of model C presented in this chapter. Before proceeding the reader is encouraged to work
through Appendix (C). For the reader not wishing to go through the tedious mathematical details of the
appendix, it is sufficient to read only the first section of Appendix (C) –in order to become familiar with
the parameters and form of the generic model used there– and then jump to the summary of the analysis
presented in section (C.8).

5.6.1 Recasting phase field equations

Considering isotropic gradients for simplicity, Eqs (5.31) can be re-cast as

τ
∂φ

∂t
= W 2

φ∇2φ− g′(φ)− L

HTm

{
c+

L

cp
h(φ)

}
P ′(φ) (5.32)

∂c

∂t
= α∇2

(
c+

L

cp
h(φ)

)
(5.33)

where temperature has been replaced by c = ∆T − (L/cp)h(φ) (∆T ≡ T − Tm), which is suggestively
labeled by the variable “c” as it is the analogue of concentration for alloys. Primes have been used
to denote differentiation with respect to φ. Choosing h(φ) = P (φ), Eqs (5.32) and (5.33) can written,
respectively, as

τ
∂φ

∂t
= − 1

H

δF [φ, c]

δφ
(5.34)

∂c

∂t
= M ∇2µ, (5.35)

where

F [φ, c] =

∫
V

{
1

2
|εφ∇φ|2 +Hg(φ) + f̄mix

AB (c, φ)

}
d3~x (5.36)

f̄mix
AB (c, φ) =

cp
2Tm

(
c+

L

cp
P (φ)

)2

(5.37)

µ =
δF

δc
=
∂f̄mix

AB (c, φ)

∂c
=

cp
Tm

(
c+

L

cp
P (φ)

)
(5.38)

M =
αTm
cp

(5.39)

Interpreted in the context of an alloy free energy, f̄mix
AB (c, φ) is a quadratic approximation of the free

energy of a phase in term of its “concentration” c, while µ is analogous to a ”chemical” potential (see
Appendix(C)).

The re-cast model above is mapped onto the generic model analyzed in Appendix (C)) by making
the following associations: The parameter H → w ≡ 1/λ (where w is the nucleation barrier). The last
term in Eq. (5.32) can be written as ∂fAB/∂φ where fAB ≡ f̄mix

AB /H, exactly analogous to Eq. (C.3)
of Appendix (C). Finally, the diffusivity function can be related to that of the generic model C in
Appendix (C) by making the following associations:

M → α q(φ, c)
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Q(φ, c) → 1

∂2f̄mix
AB

∂c2
→ cp/Tm (5.40)

Through the above correspondences, the parameter relations required to map the behaviour of model
C for a pure material onto the corresponding sharp interface model for a pure material –the traditional
Stefan problem– can now be acquired directly from the results of Appendix (C).

5.6.2 Effective sharp interface model

The coefficients of the effective sharp interface model require knowledge of the so-called lowest order
phase field and reduced ”concentration” solutions of the phase field equations. Here ”lowest order” refers
to the expansion assumed for the c and φ fields in Eqs. (C.16) with respect to the parameter ε = Wφ/do,
which is assumed formally to be small 7. The lowest order phase field φ0 follows precisely from Eq. (C.51).
It should be noted that for a pure material, equilibrium occurs at T = Tm, which leads to µ→ µF

eq = 0,

where µF
eq denotes the chemical potential corresponding to a flat stationary interface in equilibrium.

The steady state phase field φ0 of this model will be given by the solution of Eq. (C.51) (in all cases,
not only when ε � 1, which is prescribed formally by the asymptotic analysis). Once φ0(x) is known it
can substituted into Eq. (5.38), which gives the corresponding lowest-order concentration field,

c0(x) = −(L/cp)P (φ0(x)) (5.41)

Note that formally the actual ”lowest order” c0(x) differs from the steady state concentration field by a
small, additive, curvature and velocity correction, as discussed in Appendix (C). These corrections can
be neglected in determining the coefficients of the effective sharp interface model of the present phase
field model, as it turns out that only concentration differences enter the calculations.

The effective sharp interface equations of model C (see Eqs. (C.130) and (C.131)) contain three
so-called ”correction” terms, which do not enter the traditional flux conservation equation and Gibbs-
Tompson conditions of the classical sharp interface model. These corrections are associated with the terms
∆F , ∆H and ∆J (defined in Appendix (C)). These terms exactly vanish for the model C presented in
this chapter. This occurs because q(φin

0 , c
in
0 ) is a constant and P (φ) and g(φ) are symmetric. Consider

the term ∆F as an example. This “correction” gives rise to a chemical potential jump in Eq. (C.85) and
makes the Gibbs-Tompson condition in Eq. (C.107) two-sided. Substituting the zeroth order phase and
concentration fields, φo and c0(x), for the lowest order fields, F+ and F− become

F+ =

∫ ∞
0

{
∆c

q+
−
[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

}
dx =

L

Tm

∫ ∞
0

dxP (φ0(x))dx (5.42)

and

F− =

∫ 0

−∞

[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

dx =
L

Tm

∫ 0

−∞
dx(1− P (φ0(x)))dx, (5.43)

where cs is the solid side concentration (cin0 (−∞)). Therefore, ∆F = 0 and F+ = F− ≡ F since P (φ)
and φ(x) are symmetric functions around the interface, x = 0. It is similarly straightforward to show

7Note, that quantities in this analysis were extracted form a perturbation expansion that formally assumed the limit
Wφ � do, which i.e. the classical sharp interface limit. It turns out however, that the results of Appendix (C) are shown
to hold even in the limit of Wφ > do so long as the magnitude of the driving thermodynamic driving force f̄mix

AB is small,
i.e. at small undercooling in the case of solidification.
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that ∆J = ∆H = 0, which imply no spurious correction to the flux conservation relation in Eq. (C.131).
Moreover, the Gibbs-Thomson condition, which describes the chemical potential at the interface, is no
longer two-sdied as F+ = F− (see Eq. (C.130)).

The coefficients appearing in the Gibbs-Thomson condition of the effective sharp interface model
corresponding to model C are extracted from Eq. (C.130), after the latter equation is re-written in terms
of temperature to read

T o(0±)− Tm
L/cp

= −doκ− β vn (5.44)

where do and β are the capillary length and kinetic coefficient, respectively, while vn is the interface
normal velocity and κ is the local interface curvature. The notation T o(0±) denotes the temperature
outside the interface projected back into the interface. The conversion of Eq. (C.130) to Eq. (5.44) is
done by using Eq. (5.38) to write µ(±∞) = µo(0±) = (cp/Tm) (c(±∞) + (L/cp)P (φo(±∞))) and then
substituting c = (T − Tm) − (L/cp)P (φ) while noting that T (±∞) = T o(0±). This gives –after some
algebra– Eq. (5.44) with

do = a1
Wφ

λ̄
(5.45)

β =
a1τ

Wφλ̄

{
1− a2

λ̄

D̄

}
(5.46)

where λ̄, a1, a2 and σφ are given by

λ̄ =
L2

cpTm
λ (5.47)

a1 = σφ (5.48)

a2 =
K̄ + F̄

σφ
(5.49)

σφ =

∫ ∞
−∞

(
∂φo
∂x

)2

dx (5.50)

and where

K̄ =

∫ ∞
−∞

∂φ0

∂x
P ′(φ0(x))

{∫ x

0

[P (φo(ξ))− 1] dξ

}
dx (5.51)

while F̄ ≡ (Tm/L)F and D̄ ≡ ατ/W 2
φ .

It is noteworthy that the pre-factor outside the curly brackets in Eq. (5.46) is precisely the expression
obtained if the asymptotic analysis of Appendix (C) is stopped only at first order in ε, i.e. Eq. (C.72).
Using just this level of approximation requires that τ → 0 in order to simulate vanishing interface kinetics.
This leads to unrealistically long simulation time, particularly if Wφ, λ→ 0 while maintaining a constant
ratio Wφ/λ, as required by the classical asymptotics –which origianlly went up to order ε. The practical
feature of Eq. (5.46) is that one can emulate β = 0 exactly without having to make τ → 0. Indeed, it is
seen that β vanishes when τ ∼ W 2

φλ, which can be quite large since it turns out that Wφ/do ∼ λ (i.e.
Eq. (5.45) ) can hold to quite large values of λ. This was first shown by Karma and Rappel [114].
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5.7 Numerical Simulations of Model C

A code for simulating thermally limited dendritic crystals is included in the CD. It is found in the directory
called “ModelC pure” and follows the same naming principles as the previous codes discussed for models
A and B. For details of the derivations of some of the discrete numerical equations presented below, the
reader is again referred to Appendix (A).

The solidification model in Eqs. (5.31) comprises one model B type diffusion equation coupled to
one model A type order parameter equations. The former controls the rate of solidification through the
diffusion of heat, while the second is essentially ”slaved” to the first to update the position of interfaces.
The logistics for defining variables for a code to simulate model C follows analogously to that described
in the case of model A (section (4.9.2)). A notable difference in this case is that at least one new array
for the temperature must be defined, which implies that this simulation immediately requires double the
computer memory of models A or B. As can be expected, the numerical simulation involves a combination
of the update steps previously used for solving models A and B. An algorithm to update model C is shown
in Fig. (5.5). After updating the φ (represented by the array PSI(i, j)) from time n to time n + 1, the

Figure 5.5: Flowchart of algorithm to simulate Model C for solidification of a pure material.

difference in PSI array between the two times must be separately stored and used to generate the latent
heat term in the update of the heat equation, represented by the U array.
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5.7.1 Discrete equations

The simplest way to update the heat diffusion equation component of model C (step four in Fig. (5.5))
is by using the explicit scheme in Eq. (A.10),

Un+1(i, j) = Un(i, j) +
D̄∆t̄

∆x̄2
∆̄2Un(i, j) + ∆t̄ h′(φn(i, j))

(
φn+1(i, j)− φn(i, j)

∆t̄

)
(5.52)

where the reduced temperature U is defined by

U ≡ T − Tm
(L/cP )

(5.53)

and
D̄ ≡ ατ

W 2
φ

(5.54)

Time and space are made dimensionless through the re-scaling x̄→ x/Wφ and t̄ = t/τ . A one-sided finite
difference is used to discretize the time derivative. In Eq. (5.52) φn(i, j) is known from the previous (nth)
time step, while φn+1(i, j) is the latest update of φ.

The update of φn+1(i, j) (step three in Fig. (5.5)) is quite effectively done using a finite volume
approach. Specifically, a do-loop structure computes φn+1(i, j) at each mesh point using the following
adaptation of Eq. (A.16),

φn+1(i, j) = φn(i, j)

+
∆t̄

A2[φ(i, j)]

{
1

∆x̄

(
JR(i, j)− JL(i, j)

)
+

1

∆x̄

(
JT (i, j)− JB(i, j)

)
− g′(φn(i, j))− λ̄UP ′(φn(i, j))

}
, (5.55)

where λ̄ is given by Eq. (5.47). The arrays JR(i, j), JL(i, j), JT (i, j), JB(i, j) respectively handle the
gradient terms (”order parameter fluxes”) from the φ equation on the right, left, top and bottom edges
of the finite volume centered around the point (i, j) (see Fig. (A.1)). They are given by

JR(i, j)=A[φn(i+1/2, j)]
{
A[φn(i+1/2, j)]DERX(i+1/2, j)−A′[φn(i+1/2, j)]DERY (i+1/2, j)

}
JL(i, j)=A[φn(i−1/2, j)]

{
A[φn(i−1/2, j)]DERX(i−1/2, j)−A′[φn(i−1/2, j)]DERY (i−1/2, j)

}
JT (i, j)=A[φn(i, j+1/2)]

{
A[φn(i, j+1/2)]DERY (i, j+1/2)+A′[φn(i, j+1/2)]DERX(i, j+1/2)

}
JB(i, j)=A[φn(i, j−1/2)]

{
A[φn(i, j−1/2)]DERY (i, j−1/2)+A′[φn(i, j−1/2)]DERX(i, j−1/2)

}
(5.56)

where A[φn(i, j)] is shorthand notation for A(θ(φn(i, j))), with the angle θ(φ) defined in Eq. (5.22). The
expressions DERX(i±1/2, j±1/2) and DERY (i±1/2, j±1/2) denote discrete x and y derivatives of φ,
evaluated at the centres of the four edges of the finite volume (see Fig. (A.1). For example, the explicit
form of the x derivatives evaluated at the right and left edges are given by

DERX(i+ 1/2, j) ≡ (φn(i+ 1, j)− φn(i, j)) /∆x̄

DERX(i− 1/2, j) ≡ (φn(i, j)− φn(i− 1, j)) /∆x̄ (5.57)
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The y derivatives on the top and bottom edges (DERY (i, j ± 1/2)) are defined analogously in terms of
the index j. For the y derivative on the right edge of the finite volume, interpolation from the nearest
and next nearest neighbours of the point (i, j) must be used. For example,

DERY (i+ 1/2, j) ≡

(
φn(i+ 1, j + 1) + φn(i, j + 1) + φn(i, j) + φn(i+ 1, j)

)
/4∆x̄

−

(
φn(i+ 1, j) + φn(i, j) + φn(i, j − 1) + φn(i+ 1, j − 1)

)
/4∆x̄

DERY (i− 1/2, j) ≡

(
φn(i, j + 1) + φn(i− 1, j + 1) + φn(i− 1, j) + φn(i, j)

)
/4∆x̄

−

(
φn(i, j) + φn(i− 1, j) + φn(i− 1, j − 1) + φn(i, j − 1)

)
/4∆x̄ (5.58)

Equations (5.58) are similarly extended for the x derivatives defined on the top and bottom edges of the
finite volume. The final order of business is to derive a numerical expression for A[φn(i± 1/2, j ± 1/2)].
Using Eq. (5.25) gives the following recipe

A[φn(i, j)] = as ∗

(
1 + ε′

{
DERX4(i, j) +DERY 4(i, j)

MAG2(i, j)

})

A′[φn(i, j)] = −a12 ∗DERX(i, j) ∗DERY (i, j)

(
DERX(i, j)2 −DERY 2(i, j)

MAG2(i, J)

)

MAG2(i, j) ≡
(
DERX2(i, j) +DERY 2(i, j)

)2

(5.59)

The constants as, a12 and ε′ are defined here by

as = 1− 3ε4

ε′ = 4ε4/as

a12 = 4asε
′ (5.60)

where ε4 is defined as the anisotropy parameter as in Eq. (5.25).
It is noted that Eqs. (5.59) are evaluated numerically using an if-endif structure, so that when

MAG2(i, j) ≤ 10−8 (or some similarly small constant), A[φn(i, j)] = as and A′[φn(i, j)] = 0. It should be
noted that the update step defined by Eq. (5.55), along with the rules defined by Eqs. (5.56)-(5.59) are
local at each mesh point (i, j). It is thus not necessary to define the additional arrays JR(i, j), JL(i, j),
JT (i, j), JB(i, j), DERX(i, j), DERY (i, j), MAG2(i, j). Each of these variable be defied merely as
a single scalar variable that is re-assigned a corresponding value at each mesh point. That will save a
significant amount of computer memory when running large systems.

Since both Eqs. (5.52) and (5.55) are use explicit time marching, they are both subject to constraints
on the maximum ∆t that can be used. In both cases, they both contain only second order gradients in φ
or U . Linear stability for both in two dimensions demands that ∆t < ∆x2/ (4 max(D)) where max(D) is
the larger of D̄ and 1/A[φ(i, j)]. It is typically the thermal equation that sets the scale for the smallest
time step as this is the fastest process.
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5.7.2 Boundary conditions

The above algorithm is made complete by specifying appropriate boundary condition, which is required
to properly deal with gradients of U at the boundaries of the system. For example, to implement fixed
flux boundary conditions on the thermal field U , the first step is to define PSI and U on a set of ghost
nodes outside the system (see also section (4.9.2)). For example, the discretization of U as U(1..N, 1..M)
(using Fortran 90 notation) would be represented on an array U(0..N + 1, 0..M + 1). Prior to entering
the update phase for concentration, the following buffering condition should be applied:

U(0, :) = U(1, :)− q∆x
U(N + 1, :) = U(N, :) + q∆x

U(:, 0) = U(:, 1)− q∆x
U(M + 1, :) = U(M, :) + q∆x (5.61)

where q is the imposed boundary flux for the field U at the system boundaries. Similar buffering is made
for the PSI array, although in this case of array, mirror boundary conditions are most appropriate. These
can be implemented by the mapping

φ(0, :) = φ(1, :)

φ(N + 1, :) = φ(N, :)

φ(:, 0) = φ(:, 1)

φ(M + 1, :) = φ(M, :) (5.62)

The diagonals (not shown explicitly above) follow an analogous pattern where, for example, the (N +
1, N + 1) coordinate is mapped to the (N,N) node, etc, or to the opposite corner for the case of periodic
boundary conditions.

5.7.3 Scaling and convergence of model

To illustrate a specific numerical example, model C was simulated using a set of phase field interpolation
functions also used in Karma and Rappel [114], namely,

g′(φ) = −φ+ φ3

P ′(φ) = (1− φ2)2

h′(φ) =
1

2
(5.63)

Use of these functions requires that the order parameters be defined from −1 ≤ φ ≤ 1, which does
not change the physics from the usual definition from 0 ≤ φ ≤ 1 in any way. Also, these definitions
give a2 = 0.6267 (in Eq. (5.48)) and a1 = 0.8839 (in Eq. (5.49)). Figure (5.6) shows the initial growth
sequence of a thermally controlled crystal growing into an undercooled melt. The reduced temperature
was initially set everywhere to ∆ ≡ cp(Tm − T∞)/Lf = 0.55, while the initial order parameter field

satisfied φ0(i, j) = − tanh(dist(i, j)/
√

2), where dist(i, j) ≡
√

[(i− 1)∆x]
2

+ [(j − 1)∆x]
2−Ro∆x, where

Ro = 10(Wφ) is the size of a circularly shaped seed crystal nucleation from which solidification begins.
Zero flux boundary conditions were used. The simulation emulates zero interface kinetics (β = 0 in the
Gibbs-thomson condition), which implies from Eq. (5.46) that D̄ = a2λ̄. Other parameters are λ̄ = 3.19,
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Figure 5.6: (Left) Early growth sequence of a thermally controlled dendrite growing as a circular seed.
Left half is φ while the right is U , with green being the lowest and red the highest temperatures. (Right)
Later time morphology of crystal. Four-fold branches are governed by anisotropy.

ε4 = 0.06, ∆t̄ = 0.014, ∆x̄ = 0.4 and the system size is 400(Wφ)× 400(Wφ). The four-fold anisotropy of
Eq. (5.25) is evident at t̄ = 65000∆t̄.

It is instructive to convert the simulation results of Fig. (5.6) to real length and time scales, via
Eqs. (5.45) for the capillary length do and using D̄ = a2λ̄ from 5.46. For example, consider pure Nickel,
whose thermal diffusion is α ≈ 1× 10−5m2/s and its capillary length is do ≈ 2× 10−10m. This gives

Wφ =
λ̄do
a1
≈ 1× 10−9m

τ =
a2W

2
φ λ̄

α
≈ 3× 10−13s (5.64)

These are very small time and length scales! In terms of these the physical system corresponding to
the simulation domain is 400 × ∆x ×Wφ ≈ 0.16µm, while the total simulation time of corresponds to
100000×∆t× τ = 4.2× 10−10s. The only reason that any pattern at all is visible in less than a micron
in half a nanosecond is due to the very high cooling rate (i.e. very rapid solidification rate) simulated in
this example. In particular, taking the latent heat of Ni to be L = 8× 109J/m3 and the specific heat as
cP = 2 × 107J/m3K, the undercooling ∆ = 0.55 corresponds to a quench temperature of about 220K
below the melting point. A physical system that has some relevance to this situation is a rapidly cooled
levitated liquid drop of dimensions on the order ∼ 10µm in diameter and which typically solidifies on the
order of a millisecond. Even for such a system, however, complete simulation of the solidification process
requires mesh of order ∼ 25000× 25000 nodes and ∼ 1011 iterations.

The issue of spatial resolution highlighted in the example of the previous paragraph can nowadays be
dealt with using modern multi-scale methods, such as, for example, adaptive mesh refinement (AMR),
otherwise the memory management becomes unmanageable and the computational time per time step
becomes too long. Despite the advantages of AMR, the small value of τ still make the total number of
time iterations prohibitive. To overcome this problem, it turns out that λ̄ can be treated as a convergence
parameter 8 through which the characteristic length scale Wφ and time scale τ can be self-consistently

8This tacitly implies that we can no longer accurately model nucleation processes, since λ̄ is proportional to the inverse
of the nucleation barrier, a physical parameter. This approach can thus be used to examine the kinetics and interactions of
crystals post-nucleation. The incorporation of nucleation into the process needs more care and will not be discussed here.
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increased, without compromising the sharp interface limit emulated by the phase field solutions. The
idea is that results will be independent of λ̄ once quantities are re-scaled back appropriately using τ and
Wφ, which are functions of λ̄ via Eqs. (5.64). Consider, for example, the steady state dendrite tip seed
V . Once this quantity is extracted from a simulation for a particular λ̄, it must become independent of
λ̄ when re-scaled as

V̄ =
V do
α

=
a1τV

a2λ̄2Wφ
(5.65)

This is illustrated in Fig. (5.7), which plots the dendrite tip velocity at ∆ = 0.55 and ε4 = 0.05, for
λ̄ = 3.19 and λ̄ = 1.8. All other parameters and conditions are the same as that in Fig. (5.6). It is clear
that the scaling of velocity as in Eq. (5.65) leads to dimensionless steady state crystal growth rates that
are independent of the value of λ̄. In the next section a discussion of dendritic tip selection rates will
show that the dimensionless tip velocity depends only on ∆ and ε4.

Figure 5.7: Dendrite tip speeds for two values of the inverse nucleation barrier λ̄. The parameter λ̄
is chosen to self-consistently fix the interface kinetics time (τ) and interface width (Wφ) in a manner
consistent with the sharp interface model. As such, scaling the tip speed with τ/Wφ (or do/D) makes the
dimensionless tip speed universal and dependent only on undercooling and anisotropy.

Using Eqs. (5.64) to tune the sharp interface properties of the phase field model leads to remarkable
CPU speed up, a very important result first demonstrated for this case by Karma and Rappel [114].
For example, going from λ̄ = 3.19 to λ̄ = 10 increases τ by a factor of 27, while the increase in the
spatial resolution only increases in proportion to λ̄ (i.e. ∼ 3). With this value of lambda, the example
discussed above would require about 8000×8000 nodes on a conventional uniform mesh. Moreover, when
simulated on an adaptive mesh, this simulation requires only on the order of about ∼ 102 × 102 nodes
on an adaptive mesh. In this case, it is possible to perform a about a millisecond of simulation with 109

iterations. These days, the “marriage” of thin-interface relations such as those studies in this chapter
and adaptive mesh refinement has made it possible to use phase field models in a quantitative way, i.e.
to simulate experimentally relevant parameters and processing conditions. Adaptive mesh refinement is
illustrated in Figure (5.8), which shows the growth of a thermally controlled dendrite crystal growing
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into an undercooled melt. The advantage of this approach is that CPU time scales with the available

Figure 5.8: Snapshot in time of a thermal dendrite evolving under the dynamics of Eqs. (5.31) for a
pure material. A four fold-crystal is growing into an undercooled liquid. The four frames show from top
right clockwise: temperature, with red being the warmest and blue representing the lowest temperature;
the interface position, defined by φ = 0; the solid, in red, and liquid, in blue; the dynamically adapted
mesh resolving the temperature and phase field.

amount of interface in the problem being simulated, not the physical size of the domain. This essentially
reduces the dimensionality of the problem as the computer algorithm spends most of its time computing
near interfaces and only a negligible amount of time doing calculations far from interfaces. The approach
makes it possible to simulate experimentally relevant systems sizes over much longer solidification time
scales than is possible with a uniform mesh, the latter of which would fail on account of the memory
required to be stored and the CPU time per time step inherent at every iteration.

5.8 Properties of Dendritic Solidification in Pure Materials

Since solidification in metals is difficult to study in-situ, much of the fundamental solidification research
has focused on transparent organic analogues of metals, which included compounds such as succinonitrile
(SCN) and pivalic acid (PVA). These materials are attractive because they solidify near room temperature
and exhibit many features of metals in their solidification; for example, SCN molecules arrange themselves
positionally into a BCC lattice during solidification. Early research focused on predicting the tip speed
and radius of curvature of isolated crystals of a pure material growing into an undercooled melt. There
were several theories developed to explain the operating state of a thermally controlled dendrite. One in
particular, coined microscopic solvability theory, involved a direct self-consistent solution of the Stefan
sharp interface problem described by Eqs. (1.1). This theory is of particular importantce as it was later
found to be in excellent agreement with phase field model simulations and some experiments. The main
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properties of dendritic solidification predicted by microscopic solvability and some subsequent phase field
results on dendritic growth are summarized in this section.For a more encompassing review of these and
other theories, the reader is referred to a comprehensive review by Saito [184] or Langer [139].

5.8.1 Microscopic solvability theory

It is fairly straightforward to show that for a pure material there is no steady state solution for a planar
or spherical solidifying into an undercooled liquid. Assuming, however, a parabolic crystal morphology,
Ivantsov [104] showed that there are stable solutions of the thermal diffusion equation and the associated
sharp interface boundary conditions of solidification in Eqs. (1.1) 9. Specifically, Ivantsov found that a
stable solution must satisfy

∆ =
√
πPeP erfc(

√
P), (5.66)

where ∆ = cp(Tm − T∞)/Lf is the undercooling and P is the Peclet number defined as

P =
R

ld
=
RV

2α
, (5.67)

where R is the parabolic tip radius of crystal, V the tip velocity, and α the thermal diffusivity. A modified
version Eq. (5.66) by Fisher [47] included capillarity. This gave rise a V vs. R relation that goes through
a maximum as R→ 0. The Ivantsov relation, Eq. (5.66) predicts steady states for an infinite number of
(V,R) combinations, for a given undercooling ∆. Experiments, however, suggest, that only one steady
state tip speed and radius is possible for a pure materials growing into an undercooled melt. Many early
metallurgical theories assumed that the operating state of a dendrite was defined by the (R, V ) at the
maximum. This was not supported by experiments. A second equation relating V and R is thus required
to uniquely determine the tip speed and radius as a function of materials parameters (e.g. anisotropy ε4)
and process parameters (∆).

A second equation between V and R can be motivated by exploiting a linear stability analysis per-
formed by Mullins and Sekerka [157, 158]. The Mullins and Sekera analysis considers the stability and
growth rate of thermal fluctuations of a planar front advancing into an undercooled melt at a steady
velocity. Considering a noisy front as a collection of sinusoidal modes, Mullins and Sekerka derived a
linear dispersion relationship that governs the growth rate, ω(q), of each sinusoidal mode of wave vector
q as a function of material parameters and solidification conditions 10. This is given by

ω(q)

α
= (

2

ld
− doq2)|q|

√
1− 2do

ld
+
d2
oq

2

4
− 3doq

2

ld
+
d2
oq

4

2
. (5.68)

where q is the inverse wavelength, ld = 2α/V is the thermal diffusion length and do is the thermal
capillary length. A negative ω(q) implies that a mode of that q will decay and give rise to a planar front.
For a q with a positive ω(q), the mode will grow. Equation (5.68) predicts a range of unstable q modes.
These modes are amplified and ultimately give rise to dendritic branches (if you view this as happening
on a sphere). The maximum of Eq. (5.68) occurs for λms = 2π

√
dold, which corresponds to the fastest

9The Ivantsov analysis ignores curvature effects.
10It is assumed that the amplitude of a sinusoidal perturbation h(x, t) grows according to ĥ ∼ eω(q)t, where ĥ is the

Fourier transform of h and q is the wave vector of a perturbation.
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growing interface perturbation mode. It is reasonable to expect that R will scale with λms and so an
index, referred to as the stability parameter in some theories, is defined according to

σ =
dold
R2

=
do
RP

=
2αdo
V R2

=
doV

2αP 2
. (5.69)

Indeed, a more rigorous treatment of the problem by Langer and co-workers [136, 137] shows that in
the limit where P � 1, σ is the only parameter that enters the solution of the inverse problem for the
perturbed thermal field around a dendrite tip. The solution to the operating state of the dendrite thus
comes down to determining the constant σ. Then Eqs. (5.69) and (5.66) can be solved for V and R.

Toward the above-mentioned goal, Langer and Muller-Krubmhaar [136, 137] considered dendritic
growth in the presence of surface tension. They found that below a certain value of σ, a dendrite
becomes unstable to tip splitting instabilities. They postulated the so-called marginal stability theory,
which predicted that the selected value of σ is such that the growing dendrite ti is just marginally stable to
tip splitting. They estimated σ ≈ 0.026, which was close to experiments on SCN, which gave σ = 0.0195.
However, their method of approximating σ was very crude and it is likely that the agreement is simply
fortuitous. Another approach is to treat σ as fitting parameter. This however, does not lead to a fully
self- consistent theory and will not be discussed further here.

A self-consistent approach for finding σ was provided by the theory of microscopic solvability. The
theory considers the full non-linear inverse problem corresponding to the sharp interface model for a
pure material. An integral equation for the thermal field around a dendrite is developed, from which a
boundary integral equation for the crystal interface can be projected. Three interesting predictions arose
during the development of microscopic solvability. The first is that the boundary integral equation only
has non-trivial solutions if at least one the capillary length (do) or interface kinetic coefficient (β) are
anisotropic [36, 25, 24, 130]. The second is that acceptable solutions arise only for quantized values of V
and R. The third is that only the solution with the fastest velocity is linearly stable [4, 34, 167]. These
considerations lead to one unique operating value of σ ≡ σ∗(ε4), which is a function of the anisotropy (ε4)
(e.g. in the surface tension). Substituting the explicit form of σ∗(ε4) into the left hand side of Eq. (5.69),
and taking the limit of small ε4, yields the following analytical approximations for V and R,

R =
do
σo

ε
−7/4
4

P (∆)
∼ do

π

σo
∆−2ε

−7/4
4 (5.70)

V =
2ασo
do

P 2(∆)ε
7/4
4 ∼ 2ασo

π2do
∆4ε

7/4
4 . (5.71)

where σo is a constant of the theory. For general values of ε4, numerical integration must be used. The
results of microscopic solvability have been validated for ∆ < 0.6 in pure nickel solidified by levitation [33].
For higher undercooling, non-equilibrium interface kinetics become important and must be considered.

5.8.2 Phase field predictions of dendrite operating states

The first quantitative test of microscopic solvability theory by phase field models was made by Karma
and Rappel [114]. They used a model like the one discussed in this chapter was used to simulate free
dendritic growth and compared its predictions of dendrite tip speed and radius to microscopic solvability
theory, which –at the very least– constitutes an analytical solution of the sharp interface equations of
solidification. Later work further confirmed these results in tests of a novel adaptive mesh algorithm for
simulating phase field models [171].
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At low undercooling the diffusion of heat (pure materials) or impurities (alloy) occurs over a length
scale that increases with decreasing undercooling (or supersaturation in the case of alloy dendrites). In
this limit the approach to the steady state predictions of solvability theory follows a long-lived transient
period. During this regime, dendritic branches strongly interact with each other or with the boundaries
of their container [171, 183]. As a result the tip speed and radius will converge very slowly, with the

Figure 5.9: Steady-state growth speed of 2D thermal dendrites (curves) at low undercooling. The horizontal
lines show the predictions of solvability theory. The scales are logarithmic.

approximate time to convergence scaling as tcon ∼ 9D/V 2. This is seen in Fig. (5.9), which shows the
dimensionless tip speed (V do/D) vs. dimensionless time (t/τo) for thermal dendrites grown in the limit of
low undercooling. Also shown in the figure is the case where one of two perpendicular dendrite branches
(see Fig. (5.8)) is abruptly eliminated from the simulation. The result is a change in the velocity vs. time
curve of the surviving branch, evidence of the strong interaction between branches.

Interestingly, even though the dendrite tip speed (V ) and radius (R) follow a log lived transient, the
stability parameter σ∗ converges more rapidly. Figure (5.10) shows σ∗ versus dimensionless time for the
corresponding undercooling values of Fig. (5.9). It is seen that the stability parameter very rapidly attains
the value predicted by microscopic solvability. This further suggests that the solvability predictions of
Eqs. (5.70) and (5.71) will, in theory, be achieved eventually. It should be noted that the low undercooling
simulations are practically impossible to conduct numerically using any fixed-grid approaches such as the
ones discussed in Appendix (A). The disparity of length scales between the diffusion length and the
interface width necessitates the use of dynamical AMR techniques, as well as the use of a large ratio of
interface width to capillary length Wφ/do, which exploits the benefits discussed in section (5.7.3).

Since the time to converge toward a steady state diverges at low undercooling, for most practical
applications of solidification interactions and transient dynamics is the rule, not the exception, even in
the simple case of isolated dendrite growth. Transient dynamics at low undercooling is characteristic of
competitive interactions that occur in complex solidification problems [110, 219, 215, 186, 145, 152, 12,
24, 131, 183]. In this regime, the dendrite evolves sufficiently slowly that the theraml diffusion can be
modeled quasi-statically, i.e. by solving ∇2T = 0 after each time step of the phase field equation. The
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Figure 5.10: 2D simulation data of σ∗ vs time for ∆ = 0.25, 0.1, and 0.05. For clarity, the ∆ = 0.1 and
0.25 data have been shifted along the y axis by 0.04 and 0.02, respectively

dynamics and morphology of the dendritic growth in the presence of long-range diffusion interactions
can be examned using concepts of crossover scaling theory. Specifically, consider a dendrite arm growing
along the positive x-axis. Rescale the y-axis by the transverse length, Ymax of the dendrite,

yN =
y

Ymax
, (5.72)

and the x-axis by the total length, Xmax, of the dendrite arm along its centre line,

xN =
x− xroot
Xmax

, (5.73)

where Xmax = xtip − xroot and xroot defines the base of the dendrite where it emerges from the seed
nucleus. Plotting a sequence of time slices of the the dendrite arms under this re-scaling of coordinates
shows that the dendrite morphology is described by a similarity solution. Figure (5.11) shows the collapse
of multiple time sequences of simulated 2D and 3D dendrites onto one similarity solution [172]. The
numerical simulations do not have noise and thus do not exhibit sidebranches. However, it is expected
that the scaling of the primary branch shape will remain essentially unchanged in the presence of noise. It
is found that Xmax ad Ymax obey power-law type scaling, where Ymax ∼ tγ , where α ≈ 0.5 and Xmax ∼ tβ
where β ≈ 0.75 at early times and crosses over to β ≈ 1 at late times. Also shown in Fig. (5.11) is
the scaling of an experimental time sequence of PVA dendrites grown in microgravity by Glicksman and
co-workers [173].

The transient scaling of the dendrite arm along directions parallel and transverse to the tip suggest
that there is a scaling relationship obeyed by these two dimensions. In particular, it is found that these
two dimensions can be described by

Xmax(t)

LD
=

t

τD
FX

(
t

τD

)
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Figure 5.11: Dynamic scaling of computed 2D and 3D dendritic crystal morphology for crystals of a pure
material. The figure also contains experimental PVA dendrite arms scaled at times t1=42.48s, t2=62.73s
and t3=82.98s.

Ymax(t)

LD
=

t

τD
FY

(
t

τD

)
(5.74)

where LD and τD are characteristic length and diffusion scales for the transient regime. The functions
FX(z) and FY (z) are crossover scaling functions that obey one type of power lay at small z = t/τD and
cross over to another at large values of z. Figure 5.12 show the numerical form of FX(z) and FY (z)
computed from phse fields simulations.

It should be noted that there are several pictures of dendrtie scaling that can emerge depending on
the boundary conditions used. In the data presented above, zero-flux boundary conditions were used.
Moreover, analyzing only dendritic as in tip [11, 146] will give different growth exponents in the transient
scaling regime. The main result of data such as that in Figs. (5.11) and (5.12) is that it predicts that the
morphology and growth kinetics of dendrite growth is self-affine.

5.8.3 Further study of dendritic growth

The above subsection was intended to wet one’s appetite with the complex physics involved in the growth
of a single crystal. It is far from complete and it would go beyond the scope of this book to discuss
such matters further. Armed with the basics of phase field modeling in pure materials the reader is now
advised to consult the scientific literature for further study on dendritic growth, including works involving
phase field modeling. An important question, in particular, which has not been discussed here involve
the physics of side branch formation. The formation of side branches has been studied extensively in
experiments [98, 133] but a proper theoretical understanding of their origin and formation is still lacking.
Early analytical theories based on WKB approximations [21, 35] studied the effect of thermal nose as the
main source that give rise to side branches. This was later also followed up using phase field modeling
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Figure 5.12: Crossover scaling functions describing lateral width of simulated dendrite arm Ymax and
tip-to-base distance Xmax , for ∆ = 0.25, 0.1, 0.05 corresponding to Fig.(5.10).

[43], where the amplitude of the side branches away from the dendrite tip were examined in detail. Recent
work by Echebarria and co-workers suggest that both mechanisms may be at work [60] reveals that side
branching may in fact be caused by both thermal noise and a non-linear deterministic mechanism, as
was originally proposed in the 1980’s [149]. This is an area where phase field modeling is likely to play a
leading roe in the future due to the complex nature of side branch morphology, which makes it challenging
for analytical theories to deal with.
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Chapter 6

Phase Field Modeling of
Solidification in Binary Alloys

This chapter extends the phase field methodology to include alloys –a mixture of to of more components.
Following a brief review of some nomenclature regarding alloys and phase diagrams, the kinetics describing
the sharp interface evolution of solidification or solid state microstructure formation in an alloy are
discussed. This will be used as a backdrop against which to develop a phase field free energy for a class
of two component (binary) alloys. This free energy will be used to derive equations of motion for the
evolution of the order parameter (phase field), impurity concentration and heat during the growth of an
alloy phase. The last stage, as in the case of pure materials, is to make a connection between phase field
simulations –which inherently employ a diffuse interface– and the corresponding alloy sharp interface
models. The reader is assumed to have (or advised to acquire) some background knowledge of binary
alloys and their basic thermodynamics.

6.1 Alloys and Phase Diagrams: A Quick Review

An alloy is a mixture of two or more components which can be elements or compounds. For example,
the designation Al-Cu refers to a mixture of aluminum with copper. Similarly MgO-Al2O3 is an alloy of
magnesium oxide with aluminum oxide. An alloy can have more than one phase depending on the number
of components and their relative ratio. Figure 6.1 shows two solid phases of an Al-Cu alloy and illustrates
their corresponding atomic makeup. The two phases are discerned only by the relative amount of copper
to aluminum and each phase is physically and chemically distinct from its constituent component, Al
and Cu. An alloy is parameterized by the concentration of impurity (usually the minority component).
Concentration is measured either by weight or number of atoms, to the total weight or number of atoms
of the entire mixture. Therefore, an alloy of aluminum alloyed (mixed) with 4.5% by weight copper is
denoted Al-4.5%Cu.

A phase diagram is a map that tells us what phases of an alloy are possible at a given impurity
concentration and temperature. Constructing phase diagrams is a complex business depending on the
number of alloy components. The starting point is the free energy of all phases that an alloy can form, each
parameterized in terms of its component concentrations and temperature. A fixed pressure is typically
assumed. The free energy of a phase is typically determined by fitting experimental data using various
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Figure 6.1: Top: two phases of an Al-Cu alloy. Solid alloy phases are denoted by Greek letters. Bottom:
corresponding atomic make up of each phase. (Adapted from Fig. 9.9 of Ref. [42]).

fitting functions. These functions are typically motivated by thermodynamic phonemonologies, as will be
shown below for simple binary alloys. For binary alloys, minimizing the total free energy of a two-phase
system under the condition of mass conservation leads to the so-called common tangent construction [168],
the theory discussed in Section. (2.1) by which a binary phase diagram can be calculated. Considering an
example of a solid in coexistence with its liquid, the common tangent construction described by Eq. (2.14)
can be used here also, and is expressed mathematically as

µeq =
fL(ceq

L )− fs(ceq
s )

ceq
L − c

eq
s

=
∂fL(ceq

L )

∂c
=
∂fs(c

eq
s )

∂c
(6.1)

where µeq is the equilibrium chemical potential, while fL(c) and fs(c) are the free energies as a function
of concentration of the liquid and solid phase, respectively. The self-consistent solution of all three
equalities in Eq. (6.1) yields µeq and the equilibrium liquid and solid concentrations, denoted ceq

L and ceq
s

respectively. By applying this construction at different temperatures, a phase diagram is constructed.
Figure 6.2 illustrates a binary eutectic phase diagram containing two solid phases (α and β) and one
liquid phase. Colored regions in the figure denote regions of concentration and temperature where a
single phase can exist. Other regions denoted concentrations and temperature where phases can co-exist.
The concentration 18.3wt% Sn is called the solubility limit of the alloy; the largest concentration of Sn
that can be mixed with Pb in the solid phase. Beyond the solubility limit, and for temperature below
the eutectic temperature (TE), solid α will precipitate a second solid phase β. At T = TE it is possible
to have liquid and the two solid phases co-exist.

One of the key assumptions guiding the description of microstructure evolution is that an interface
between two phases remains in local equilibrium. This is only really true at low levels of cooling. Luckily
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Figure 6.2: Phase Diagram of lead (Pb) alloyed with tin (Sn). Colored fields denote single phases, while
fields denote coexistence regions. Solid phases are labeled with Greek letters. (Adapted from Fig. 9.16
of Ref. [42]).

this apparently limiting condition happens to describe most commercial casting conditions. Emerging
technologies (e.g. strip-casting of aluminum) are starting to move towards processing thinner materials.
This implies a more rapid cooling rate and, hence, finer microstructure. A consequence of this is that the
interface can not always be considered to be in local equilibrium during solidification. Non-equilibrium
interface kinetics lead to both morphological differences or microstructure and non-equilibrium phases
that do not follow the equilibrium phase diagram.

6.2 Microstructure Evolution in Alloys

The growth of microstructures in alloys is more complex than in pure materials because the phase
transformation kinetics are limited by both heat and mass transport. Fortunately, these two processes
occur on sufficiently different time scales that for many cases of practical importance only the slower of
the two –mass transfer– need be considered. The faster, heat conduction, can typically be treated as
either isothermal or “frozen”, wherein temperature is assumed to evolve so rapidly compared to solute re-
distribution that it is in a quasi-steady state. This assumption is not unreasonable for low levels of cooling
as the ratio of thermal diffusion (α) to solute diffusion D ranges in many metals from 10−4 < α/D < 10−2.
Of course there is nothing to stop one from formulating multiple equations for phase, concentration [of
impurities], heat, etc. However, the more equations that must be simulated numerically, the longer the
simulation times will be, thus making it more difficult to attain experimentally relevant times.

6.2.1 Sharp interface model of solidification in one dimension

Figure 6.3 illustrates a typical temperature quench (T → T1 from T2) into the two phase co-existence of
an alloy. In the particular case shown, the liquid phase L of average concentration Co will precipitate a
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second, solid, phase α. The growth rate of the α phase within the liquid will depend on the driving force,
which is proportional to the depth of cooling into the co-existence region. The growth rate is, however,
also limited by the ability for solute atoms of element B to diffuse away from the interface of precipitated
phase. This is because, as illustrated in Fig. 6.3 , the α phase can only exist at a lower B concentration
than the L phase. As a result, solute atoms of B are rejected from the crystal as it grows, in order that
it may attain a lower concentration.

Figure 6.3: Quench into a two phase (solid-liquid) coexistence region of a A-B eutectic alloy. When
cooling from T1 to T2, the L (liquid) phase gives rise to a solid phase α.

A kinetic model of the growth of a second phase precipitate must model diffusion of solute atoms
away from the α − L interface, keep track of the driving force of the reaction and account for the local
concentration of solute on either side of the interface. These effects are non-linearly coupled. For example,
the higher this accumulation of solute atoms at the interface and/or the slower the diffusion of solute
atoms in the liquid, the slower the precipitate can grow. The lower the accumulation and/or the faster
the diffusion the faster it can growth. If it is assumed that the α− L interface remains in equilibrium 1

the precipitation reaction is described (in 1D) by

∂C

∂t
= DL

∂2C

∂z2

vint =
J

∆Co
≡ − DL

(1− k)CL

∂C

∂z

∣∣∣∣
z=int

(6.2)

where k is the ratio of the equilibrium solid to liquid concentrations is Cs/CL = k, obtained from the phase
diagram at the quench temperature. In the second of Eqs. (6.2), the notation ∆C0 is the concentration
difference between coexisting α and L phases at equilibrium and J is the mass flux, described by Fick’s
first law. This example also assumes the so-called one-sided diffusion model, wherein diffusion is only

1this assumes that the diffusion of atoms near the interface and their attachment to the solid from the disordered liquid
proceeds so rapidly that atoms have enough time to achieve their equilibrium proportions –on the solid and liquid sides of
the interface– on time scales much smaller than those governing meso-sclae diffusion
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assumed to take place –to any significant degree– in the parent (in this case liquid L) phase. Solute flux
in the precipitate phase is thus assumed to be zero, which implies that either the precipitate diffusion
coefficient Ds ≈ 0 or ∂C/∂z ≈ 0. The second of Eqs. (6.2) imply that everywhere expect the interface
the transport of impurity atom occurs by simple mass diffusion.

The considerations above can be equivalently applied to any generic transformation where one phase
emerges (precipitates) form a parent (matrix) phase. Another very important reaction that is amenable
the kinetic equations above is a so-called precipitation reactions. In the context of Fig. (6.2), this occurs
when the solid α phase is cooled to a temperature below the solvus line. This then causes particles of the
β phase. It should be noted that the kinetic equations discussed here will have do be expanded to involve
elasticity, in cases where the precipitated and matrix phases elastically interact at phase boundaries.
Such strain-induced phase transformations will be discussed further in Chapter (7).

6.2.2 Extension of sharp interface model to higher dimensions

In two or three dimension the sharp interface kinetics of Eq. (6.2) can be extended in a relatively straight-
forward manner. To formalize the nomenclature a bit, consider, again, a sharp interface model of single-
phase solidification/precipitation in a binary alloy made of components A and B, whose phase diagram
has arbitrary solidus and liquidus lines. Starting with a liquid phase and cooling into the co-existence
regions will initiate solidification of the solid phase. Assuming for the moment isothermal conditions,
solidification is described by solute diffusion in each of the bulk phases and two corresponding boundary
conditions at the solid-liquid interface: flux conservation and the Gibb’s-Thomson condition. In the
limit where the interface can be assumed to be mathematically sharp, these processes are expressed,
respectively, as:

∂tc = ∇ · (ML,s∇µ) (6.3)

(cL − cs)Vn = Ds∂nc|− −DL∂nc|+ (6.4)

cL,s − ceqL,s = − 2σΩ

∆CoΛ±
κ− βVn (6.5)

where c ≡ c(~x, t) is the concentration field, µ is the chemical potential, Ms,L(c) = ΩDs,Lc(1 − c)/RT is
an expression for the mobility, with Ω the molar volume of the phases, Ds,L the solid/liquid diffusion co-
efficients, respectively, T the temperature and R the natural gas constant. The notation ∂nc|± represents
the normal derivative on the liquid/solid sides of the interface. In the last two equations, cL,s represents
the concentrations on the liquid/solid side of the interface, σ is the surface tension of the solid-liquid
interface, κ is the local interface curvature and ∆Co = ceq

L − ceq
s where ceq

L,s represent the equilibrium

liquiud/solid concentrations at the given temperature. The parameters Λ± = ∂2GL,s(c)/∂c
2|ceq

L,s
, where

GL,s is the molar Gibb’s free energy of the phase. Finally, Vn is the local interface velocity and β is the
interface kinetics coefficient

For a general binary alloy, standard but lengthy manipulations [182] can be used to express Eq. (6.5)
as

cL,s
ceq
L,s

= 1− (1− k(T ))

[
2σT/L

|mL,s(T )|(1− k(T ))ceq
L

]
κ− β′Vn (6.6)

where the constants mL,s are defined by

|mL,s(T )| =
RT 2(1− k(T ))[Ĝ

′′
(ceqL,s)c

eq
L,s]

ΩL
(6.7)
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and where an effective partition coefficient k(T ) is defined by

k(T ) =
ceq
s (T )

ceq
L (T )

(6.8)

The notation β′ denotes a re-scaled form of β. In general, the partition coefficient is temperature depen-
dent as the phase diagrams are curved. The notation, Ĝ

′′
(ceq
L,s) is the second derivative of the dimension-

less molar Gibb’s free energy evaluated at the equilibrium concentrations ceq
L,s , and made dimensionless

by redefining Ĝ ≡ G/RT . The parameter L is the latent heat of fusion per volume of the alloy. For the
case of an ideal dilute alloy, G

′′
(ceq
s )ceq

s = G
′′
(ceq
L )ceq

L = 1, k(T ) = ke is a constant and ms = mL ≡ m is
a constant, where m is the slope of the liquidus line. These simplifications reduces Eqs. (6.6) to

cL,s
ceq
L,s

= 1− (1− ke)
[

2σT/L

|mL|(1− ke)ceq
L

]
︸ ︷︷ ︸

do

κ− β′Vn (6.9)

where the traditional expression for the so-called solutal capillary length of the dilute ideal binary alloy
is indicated.

6.3 Phase Field Models of Binary Alloys

This section begins by proposing a free energy functional of binary alloys that incorporates a solid-liquid
order parameter field (or phase field) φ(~x) and the usual solute concentration field c(~x) and temperature
T (~x). The free energy density has contributions from bulk phases and from interfaces in the system.
Various binary alloy systems will be explored. The evolution of the phase, concentration and temperature
fields, the equation of motion of which will be introduced in the following section, will be see to follow
directly from the global minimization of this free energy functional. Essentially, the free energy functional
provides the driving force for non-equilibrum phase transformations in alloys.

6.3.1 Free Energy Functional

The complete free energy functional of an alloy must incorporate chemical and temperature effects of
bulk phases as well as gradient energy terms. As was seen for dendritic growth in pure materials, the
properties of dendritic growth are strongly controlled by surface tension effects. Indeed, there can be no
dendritic morphology without anisotropy that appears either in the surface tension at low undecooling
or the interface kinetics at high undercooling. In alloys there are two types of interfaces, one due to
a transition from an ordered solid to a disordered liquid. The other can arise when crossing across
a compositional transition, which can occur even within the same ordered crystal. The complete free
energy functional that incorporates bulk and interface effects is given by

∆F =

∫
V

{
|εc∇c|2

2
+
|εφ∇φ|2

2
+ f(φ, c, T )

}
dV (6.10)

where εφ ≡
√
HWφ and εc ≡

√
HWc are constants that set the scale of the solid-liquid and compositional

domain interface energy, respectively, and have units [J/m]1/2, while [H] = J/m3. The constants Wφ and
Wc define the length scales of the solid-liquid interface and a compositional boundary. To make a clearer
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connection with the nomenclature in Appendix (C), the bulk free energy expressions in Eqs. (6.13), (6.15),
(6.17) below are separated into a barrier term Hg(φ), which depends only on phase, and the remaining
bulk free energy part, f̄mix

AB , which depends, in general, on c, φ and T . Thus,

f(φ, c, T ) = Hg(φ) + f̄mix
AB (φ, c, T ) (6.11)

In most problems the εc term can be neglected since εφ can be tuned to account for the total surface
energy.

6.3.2 General form of f(φ, c, T )

One way of constructing the free energy of an alloy is to assume that the alloy is comprised of two pure
phases of A atoms and B atoms, each phase weighted by the relative concentration of A and B atoms.
To this are added the interactions emerging from the fact that the alloy is, in fact, a mixture of A and
B atoms in either phase. This includes both entropic and enthalpic interactions. Differences in of these
affects between the solid and liquid phases are modulated the usual phase field or order parameter φ.
These consideration can be modeled mathematically as

f(φ, c, T ) = (1− c)fA(φ, T ) + cfB(φ, T )

+ RT {(1− c) ln(1− c) + c ln c}
+ c(1− c) {G(φ)Ms(c, T ) + (1− G(φ))ML(c, T )} (6.12)

The functions fA and fB in Eq. (6.12) are the individual energies of bulk A andB components, respectivey.
The logarithmic terms represent the entropic free energy of mixing. The final termsMs(c, T ) andML(c, T )
are phenomenological additions encapsulating the net effect of the interactions between atoms of A and
B. The function g(φ) is a phenomenological interpolation function with limits G(φ → φL = 0) = 0 and
G(φ → φs) = 1. This function can be thought of as modulating the free energy between the two phases
being modeled. As in the study of pure materials, the form of g(φ) must be chosen such as to reduce
f(φ, c, T ) to the appropriate bulk thermodynamics form for each phase. The single phase free energy
that might be, for example, obtained from a thermodynamic database is related to the free energy in
Eq. (6.12) by fL(c) = f(φ = 0, c, T ) for the liquid and fs(c) = f(φ = φs, c, T ) for the solid.

Equation (6.12) is general and can only becomes useful if specific forms for fA. fB , Ms, ML are
prescribed. The following subsections present three models that chooses these functions to model three
different alloy systems, a dilute binary alloy, an isomorphous binary alloy and a eutectic binary alloy.

6.3.3 f(φ, c, T ) for isomorphous alloys

A simple alloy that Eq. (6.12) can describe is an idealized, isomorphous alloy, which has only one solid
phase. An example is Cu-Ni. The free energy in Eq. (6.12) can be specialized to this situation by using
fA and fB from Eq. (5.18). For components with similar atomic radius, it can also be assumed that
nucleation barriers are the same, i.e., HA = HB ≡ H. Finally, both non-ideal terms, Ms and ML, are
set to zero. This gives,

f(φ, c, T ) =
(
fL(TA)− (T − TA)sLA

)
(1− c) +

(
fL(TB)− (T − TB)sLB

)
c

−
(
LA(TA − T )

TA
(1− c) +

LB(TB − T )

TB
c

)
P (φ)

+ Hg(φ) +RT {(1− c) ln(1− c) + c ln c} (6.13)
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where TA and TB are the melting temperature of components A and B, respectively, LA and LA are
latent heats of fusion of A and B, respectively and sLA and sLB are the entropy densities of liquid A and
B. The interpolation function P (φ) satisfies the limits P (0) = 0 and P (φ = φs) = 1. In this model
atoms only interact via entropic interactions, i.e. they tend to avoid each other by randomizing their
configurations on a lattice. It should be noted that the validity of Eq. (6.13) (as well as the models in the
next two section) assumes that (T − TA)/TA ≈ (T − TB)/TB so that the linear temperature expansions
of components A and B are valid in the neighborhood of T ≈ TA.

Applying the common tangent criteria in Eq. (6.1) to the model in Eq. (6.13) gives a simple analytical
prediction for the equilibrium solid and liquid concentrations, referred to as the solidus and liquidus lines.
The are given by

ceq
s (T ) =

1− e−2∆TA/RT

e−2∆TB/RT − e−2∆TA/RT

ceq
L (T ) = ceq

s (T ) e−2∆TB/RT (6.14)

where ∆TA,B ≡ LA,B(TA,BM −T )/(2TA,Bm )). It is recommended that interested reader try to obtain these
as a way of brushing up on basic thermodynamics.

6.3.4 f(φ, c, T ) for eutectic alloys

The free energy Eq. (6.12) can also be specialized for a binary eutectic alloy. Once again, the functions
fA and fB can be set to the from in Eq. (5.18) it will be assumed that HA = HB ≡ H. If the liquid
phase is assumed to be ideal, the function ML = 0. A non-ideal solid can then be modeled via Ms. One
example, of Ms is the empirical form Ms = (a1T − a2)(2c − 1) − (a3T + a4), where the constants a1-a4

are to be determined from thermodynamic databases for a particular alloy. 2 This gives,

Figure 6.4: Phase diagram of Silver-copper. Blue lines represent equilibrium co-existence lines. Red lines
are meta-stable projections.
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f(φ, c, T ) =
(
fL(TA)− (T − TA)sLA

)
(1− c) +

(
fL(TB)− (T − TB)sLB

)
c

−
(
LA(TA − T )

TA
(1− c) +

LB(TB − T )

TB
c

)
P (φ)

+ c(1− c) {(a1T − a2)(2c− 1)− (a3T + a4)}P (φ)

+ Hg(φ) +RT {(1− c) ln(1− c) + c ln c} (6.15)

where we have taken G(φ) → P (φ). For the case a1 = 1.73, a2 = 5600, a3 = 9.19, a4 = −44600, a
common tangent construction applied numerically to Eq. (6.15) leads to the phase diagram in Fig. (6.4),
which is a fairly good approximation of the of Ag-Cu phase diagram.

6.3.5 f(φ, c, T ) for dilute binary alloys

An important practical limit of the ideal free energy in Eq. (6.13) is the limit of very small solute con-
centrations. Expanding the logarithms in Eq. (6.13) and taking the limits c� 1 gives

f(φ, c, T ) = Hg(φ) + fL(TA) + cfL(TB)− sAL(T − TA)− sBL (T − TB)c

+
LA(T − TA)

TA
P (φ) +

LB(T − TB)

TB
cP (φ) +RT {c ln c− c} (6.16)

Expanding temperature as T = TA+∆T , where ∆T ≡ T−TA, and neglecting ∆T c� 1 further simplifies
Eq. (6.16) to

f(φ, c, T ) = Hg(φ) + fL(TA)−∆TS(φ) + E(φ)c+RT {c ln c− c} (6.17)

where

S(φ) = sLA −
LA
TA

P (φ)

E(φ) = (TB − TA)

(
sLB −

LB
TB

P (φ)

)
(6.18)

The above derivation neglects the fL(TB)c term, which is reasonable only if fL(TA) is not too different
from fL(TB). The function S(φ) interpolates the bulk entropy from liquid to solid via P (φ), while E(φ)
modulates the change of internal energy due to a solute concentration c. As mentioned previously, there
is a certain degree of freedom in choosing their specific form, so long as the quantities they interpolate
attain their thermodynamically predicted far field values. Moreover, as far as the thermodynamics of the
bulk phases are concerned, it does not even matter if a different P (φ) is used in S(φ) than that in the
internal energy E(φ). It will be shown in section (6.7) how this property can be exploited to significntly
simplify the calculation of surface tension for binary alloy phase field model using Eq. (6.17).

6.4 Equilibrium Properties of Free Energy Functional

As discussed previously, the bulk free energy of a phase is captured in the non-gradient term of the phase
field free energy. Inclusion of the gradient expressions further makes it possible to model the surface

2The constants a1-a4 used here are different from the corresponding variables used in the Landau free energy construction
in Chapter 1.
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tension of equilibrium interfaces. In order to compute the surface tension associated with the free energy
functional of Eq. (6.10), it is necessary to first calculate the corresponding equilibrium concentration
and phase field profiles. At equilibrium, a flat crystal-melt interface will be characterized by a constant
chemical potential µF

Eq and corresponding steady state profiles for concentration, co(x), and phase field,
φo(x). Minimizing the grand potential with respect to c and the free energy in with φ gives the equilibrium
profiles φo and co as the simultaneous solutions of the following equations:

µF
Eq =

δF (φ, c)

δc
=
∂f̄mix

AB (co, φo)

∂c
− ε2c

d2co
dx2

δF

δφ

∣∣∣∣
φo

= W 2
φ

d2φo
dx2

− g′(φo)−
1

H

∂f̄mix
AB (φo, co)

∂φ
= 0 (6.19)

Where µF
Eq is obtained by considering the equilibrium of the two phases from the interface. The partial

derivatives in Eq. (6.19) are ordinary derivatives as the profiles are one dimensional in equilibrium.
Equations (6.19) must be solved subject to the boundary conditions co(x→∞) = cL, co(x→ −∞) = cs,
φo(x→∞) = 0 and φo(x→ −∞) = φs.

The far field values {cs, cL, φs, φL = 0} are determined by considering Eqs. (6.19) far from the interface
–in the bulk material– where derivatives vanish. The bulk free energy f(φ, c) (T dependence suppressed
for simplicity) is first minimized with respect to φ giving two solutions, φs(c) for the solid and φL = 0 in
the liquid (this assumes a fourth order φ expansion of f(φ, c)). Substituting φs(c) and φL = 0 back into the
bulk free energy gives fs(c) ≡ f(φs(c), c) for the solid and fL(c) ≡ f(φL = 0, c) for the liquid. Applying
Eq. (6.1) to fs(c) and fL(c) gives µF

Eq, cs and cL, with which the corresponding order parameters, φs and
φL = 0 can also be computed. It should be emphasized that while the discussion has been in the context
of a solid-liquid interface, the procedure above can be applied equivalently to coexisting solid phase or
other two phase interfaces as well. Moreover, while the discussion thus far has assumed that φL = 0,
different choices of g(φ) and f̄mix

AB (φ, c) can lead to minima where φL 6= 0.

6.4.1 An example of bulk equilibrium using a multi-state model

These above ideas are best illustrated by an example. Consider the following example free energy ex-
panded to sixth order in the order parameter,

f(φ, c) =
a0

2
(c− c1)2 − a2

2
(c− c2)φ2 − a4

4
φ4 +

φ6

4
(6.20)

where the constants a0, a2, a4 are in principle temperature dependent. This form of free energy is chosen
specifically to illustrate the generality of the ideas discussed herein to phase transformations different
from solidification. Indeed, this form of free energy density is used in Ref. [201] to model precipitation
of multiple ordered structures from a matrix phase of a binary alloy. By construction, it represents each
phase by a quadratic approximation in concentration. The left frame of Fig. (6.5) shows f(φ, c) for the
constants a0 = 30, a2 = −4, a4 = 2.8, c1 = 0.3, c2 = 0.2. You can imagine that the φ = 0 state is
metastable matrix phase and the two non-zero φ states represent two solid phases that precipitate from
a matrix.

The bulk values of the order parameter are found by minimizing f(φ, c) with respect to φ. This gives

φL = 0, φs = ±1

2

√
2a4 + 2

√
a2

4 + 4a2 (c− c2) φq = ±1

2

√
2a4 − 2

√
a2

4 + 4a2 (c− c2) (6.21)
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where φL represents the matrix phase and φs and φq four ordered variants (i.e. precipitates). Here only
the positive solution of φs is considered. Note that φs is concentration dependent (contrast this to the
case of pure model in section (5.3)). Substituting φL and φs back into f(φ, c) gives the chemical free
energies of the bulk ordered and matrix phases,

fL(c) ≡ f(φ = φL = 0, c) =
a0

2
(c− c1)

2

fs(c) ≡ f(φ = φs(c), c) =
a0

2
(c− c1)2 − a2

8
(c− c2)R(c)− a4

64
R(c)2 +

1

384
R(c)3 (6.22)

where
R(c) ≡ 4φs(c)

2 (6.23)

The right frame of Fig. (6.5) plots fs(c) and fL(c). It should be clear that fs(c) is the φ = φs(c) contour
of f(φ, c) and fL(c) is the φ = φL = 0 contour. Applying the common tangent rule in Eq. (6.1) gives the

Figure 6.5: (Left) Free energy landscape of an alloy versus composition c and φ. (Right) free energies of
solid, φ = φs contour, and liquid, φ = 0 contour. The dashed line is the common tangent line.

compositions cL and cs, and µF
Eq, the slope of the common tangent line, shown by the dashed line in the

figure.
The calculated values {φs, φL, cs, cL, µF

Eq} serve as boundary conditions to the two differential equa-
tions in Eq. (6.19) for the equilibrium profiles co(x) and φo(x). In the special case when εc = 0, the first
of Eq. (6.19) shows that the equilibrium concentration field can actually be expressed in terms of the
phase field φo, i.e.

co(x) = co(φo(x)) (6.24)

if the relation between chemical potential and connection can be inverted. This then makes the second
equation an ordinary [non-linear] differential equation in φo, i.e.

W 2
φ

d2φo
dx2

− g′(φo)−
1

H

∂f̄mix
AB (φo, co(φo))

∂φ
= 0 (6.25)

The example in this subsection serves to illustrate that the process of calculating the equilibrium
properties and profiles of the order parameter and concentration across a two-phase interface. In general,
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it shows that surface energy depends on the profile of solute through the interface. In the spacial case
where Eq. (6.25) holds, it only depends on the order parameter variation through the interface. The next
section shows how an expression for surface energy is calculated.

6.4.2 Calculation of interface energy

The calculation of the surface tension of an alloy interface is calculated by considering the interface excess
of the grand potential in a system with a planar interface. To keep the algebra at a basic level, only the
case εc = 0 is considered here. Surface energy is defined by

σ =

∫ ∞
−∞
{Ω(φo, co)− Ωeq}dx (6.26)

where the grand potential Ω and its equilibrium value Ωeq are defined by

Ω(φo, co) =
ε2φ
2

(
∂φo
∂x

)2

+ f(φo, co)− µF
Eqco

Ωeq = fs(cs)− µF
Eq cs = fL(cL)− µF

Eq cL (6.27)

Equation (6.26) is evaluated in two pieces, one from −∞ ≤ x ≤ 0 and the other form 0 ≤ x ≤ ∞. Doing
this and substituting, for example, Eq. (6.11) gives

σ =

∫ 0

−∞

(
ε2φ
2

(
∂φo
∂x

)2

+H [g(φo)− gm] +
[
f̄mix

AB (φo, co)− fs(cs)
]
− µF

Eq [co(x)− cs]

)
dx

+

∫ ∞
0

(
ε2φ
2

(
∂φo
∂x

)2

+H [g(φo)− gm] +
[
f̄mix

AB (φo, co)− fL(cL)
]
− µF

Eq [co(x)− cL]

)
dx (6.28)

where gm ≡ g(φs) = g(φL) is the minimum of the potential barrier between the two phases.

Equation (6.28) is simplified by multiplying both sides of the second of Eqs. (6.19) by dφo/dx and
integrating from −∞ to a point x. This gives

W 2
φ

2

(
dφo
dx

)2

−
∫ x

−∞
g′(φo)

dφo
dx′

dx′ − 1

H

∫ x

−∞

∂f̄mix
AB

∂φ

dφo
dx′

dx′ = 0 (6.29)

The integrand of the third term in Eq. (6.29) can be expanded as

∂f̄mix
AB (φo, co)

∂φ

dφo
dx

=
df̄mix

AB

dx
− ∂f̄mix

AB (φo, co)

∂c

dco
dx

=
df̄mix

AB

dx
− µF

Eq

dco
dx

, (6.30)

which is substituted into Eq. (6.29) to give

ε2φ
2

(
dφo
dx

)2

= H [g(φo)− gm] +
[
f̄mix

AB (φo, co)− fs(cs)
]
− µF

Eq [co(x)− cs]

= H [g(φo)− gm] +
[
f̄mix

AB (φo, co)− fL(cL)
]
− µF

Eq [co(x)− cL] (6.31)
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where W 2
φH = ε2φ was used. The first line of Eq. (6.31) is obtained by integrating the second equation

in Eq. (6.19) from −∞ to x, while the second line is obtained by integrating from x to ∞. Substituting
the two [equivalent] right hand sides of Eq. (6.31) for the corresponding expressions in Eq. (6.28) gives

σ = W 2
φH

∫ ∞
−∞

(
dφo
dx

)2

dx (6.32)

Equation (6.32) is analogous to Eq. (3.18) for the surface tension of model A. The main difference for
an alloy is that the equilibrium phase field φo now has a concentration dependence through the interface
for an alloy. A complication arises from Eqs. (6.28) and (6.31) when one wishes to emulate a particular
surface energy using a diffuse interface, which is often done for numerical convenience. It turns out that
for realistic values of interface energy, the extra terms in the large square brackets of Eq. (6.31) limit
the largest interface width for which equilibrium solutions exist to only a few nanometers. This is shown
elegantly by Kim and co-workers in Ref.[120]. This severely limits numerical efficiency of phase field
simulations. Ways of getting around this limitation will be discussed below.

6.5 Phase Field Dynamics

The dynamics of the alloy solidification proceed analogously to those in a pure material. At low rates of
solidification, the diffusion of heat occurs much more rapidly than the diffusion of solute impurities in a
binary alloy. As a result, the temperature can in some situations be considered ”frozen” on the time scale
of mass transport, the latter of which then become the rate limiting step in the solidification process.
Under these conditions, it is reasonable to consider only solute diffusion and phase field dynamics. It is
straightforward to extend the equations below to include temperature evolution by including the enthalpy
entropy production, Eq. (5.27), and enthalpy, Eq. (5.29). This is left to the reader.

The changes in solute concentration are governed by the well-know mass conservation equation

∂c

∂t
= −∇ · ~J (6.33)

where ~J denotes the flux of solute. When ~J = −∇c, the usual Fick’s law of diffusion is recovered. In
more general cases, however, the flux of solute is given by ~J = −M(c, φ)∇µ where M(c, φ) is the mobility
and µ ≡ δF/δc is a generalized inter-diffusion potential [16, 91]. This form of the flux is derived from
the entire free energy functional and considers bulk and gradient energy contributions. For ideal alloys
M(c, φ) = DLq(φ, c) = DL(Ω/RT )Q(φ)c(1− c), where Ω is the molar volume of the alloy and DL is the
liquid phase diffusion. The function Q(φ) interpolates the diffusion across the interface. It can either be
determined experimentally –a difficult task– or constructed so that the alloy phase field equations emulate
the sharp interface models described earlier in this chapter. Substituting the inter-diffusion potential into
the mass conservation gives

∂c

∂t
= DL∇ · {q(φ, c)∇µ}

= DL∇ ·
{
q(φ, c)∇

(
∂f̄mix

AB (c, φ)

∂c
− ε2c∇2c

)}
(6.34)

where q(φ, c) is given by

q(φ, c) = Q(φ)/
∂2f̄mix

AB (φ, c))

∂c2
(6.35)
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with Q(φ) being used to interpolate mobility between different phases. This function is yet another
interpolation function that can either (a) be in theory fit to microscopic measurements or (b) used as a
degree of freedom to help map the behavior of a phase field model onto the corresponding sharp interface
model.

In analogy with the case for a pure materials, the second equation in the phase field model for binary
alloys is the standard first order equation describing the dissipative dynamics of the phase field φ, i.e.,

τ
∂φ

∂t
= − 1

H

δF

δφ
= W 2

φ∇2φ− dg

dφ
− 1

H

∂f̄mix
AB (c, φ)

∂φ
(6.36)

where τ → 1/(MLH). It is should be noted that the alloy phase field model is another instance of a
”model C” discussed for a pure materials; it comprises a flux conserving diffusion equation coupled to
an equation for a non-conserved order parameter. For simplicity, Eq. (6.36) has omitted surface energy
anisotropy. To model anisotropy, it is necessary to modify the gradient term in Eq. (6.36) and τ according
to

W 2
φ∇2φ → ∇ ·

(
W̃ 2(θ)∇φ

)
− ∂x

[
W̃ (θ)W̃ ′(θ)∂yφ

]
+ ∂y

[
W̃ (θ)W̃ ′(θ)∂xφ

]
τ → τ̃(θ) (6.37)

where W̃ (θ) = WφA(θ) and τ̃(θ) = τA2(θ) with the form of A(θ) given by Eq. (5.25).

6.6 Thin Interface Limits of Alloy Phase Field Models

The thin interface limit of Eqs. (6.34) and (6.36) is obtained by connecting these equations to the alloy
model in Appendix (C), which is of the same form as the one studied here (when the notational change
H → w is made). In the limit when the phase field interface becomes ”sharp” (i.e. Wφ � do) the
alloy phase field equations presented above rigorously reduce to the corresponding sharp interface kinetic
equations presented earlier in this chapter. This limit, however, is of little practical value in 2D or 3D
numerical simulations of complex microstructure formation due to the grid resolution required and the
very small associated time scale τ required to eliminate interface kinetics. If there is any hope of using
phase field models quantitatively at experimentally relevant microstructure growth rates two ingredients
are required. The first is the use of a diffuse interface Wφ, which can dramatically increase the usefulness
of efficient numerical algorithm such as adaptive re-meshing. The second is the ability to self-consistently
and easily relate τ and Wφ to a unique surface tension and interface kinetics coefficient (particularly
β = 0), even when Wφ ∼ do.

Emulating an effective sharp interface limit with a diffuse phase field interface is more difficult for an
alloy than it is for a pure material for two main reasons. As already discussed at the end of section (6.4.2)
the coupling of solute and order parameter fields in the steady state solutions makes the determination of
surface energy quite tedious. Another issue deals with the fact that it is not possible to self-consistently
relate the surface energy to the nucleation barrier height (∼ λ−1) and the interface thickness (Wφ) for
arbitrarily diffuse interface widhts. This has been shown quite nicely by Kim and co-workers [120]. As will
be shown in the examples below, this limitation can be removed by requiring that ∂f̄mix

AB (φo, co)/∂φ = 0
at steady state. This is done either by the choice of interpolation functions, as is done by Karma, Plapp
and co-workers [113, 59, 76], or by introducing fictitious concentration field, as is done by Kim [123] and
others (see section (6.9)).
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The second difficulty arising in attaining a desired thin interface limit of an alloy phase field model
arises because solute diffusion in the solid phase is essentially zero on the time scales over which mi-
crostructure selection occurs. This so-called two-sided or non-symmetric diffusion gives rise to spurious
kinetic effects to the standard sharp interface model of section (6.2.2). Specifically, it contains extra terms
in the flux conservation equations that scale with the interface width and there is a jump in the chemical
potential that scales with the interface width, which makes the Gibbs-Thomson conditions two sided.
The generic form of these so-called “corrections” (referred to in Section (C.8) as ∆F , ∆J and ∆H) was
already discussed in section (5.6) and shown to identically vanish for pure materials. In alloys they do not
formally vanish as they are physically linked to solute trapping effects that emerge due to the existence
of a finite interface thickness. Typically, since these correction terms scale with the dendrite tip speed
and the interface width, they are essentially irrelevant at low solidification rates and a realistic values of
Wφ. On the other hand, as discussed previously, efficient simulatons of phase field models require the
use of rather diffuse interfaces, which can be much larger than the solutal capillary length. As a result,
to perform quantitative phase field simulations it is critical that these kinetic corrections must be made
to vanish, otherwise they will be artificially amplified.

It turns out that an efficient way to make the correction terms ∆F , ∆J and ∆H = 0 vanish requires
altering the variational form of Eqs. (6.34) and (6.36). Specifically, this involves the addition of a so-
called anti-trapping current to the mass transport equation. The general idea of the anti-trapping flux
is to correct for the spurious solute trapping caused by the diffuse interface. Along with the freedom to
choose the form of the function that interpolates diffusion through interface, there are enough degrees of
freedom to eliminate the spurious kinetics in the thin interface limit. This ”illegal” move of adding an
unphysical source of flux addresses the computational inefficiency that arises from simulating the phase
field model with a ”sharp interface” (i.e. interface width of order 1-2 nm) by morphing the original model
into a mathematical tool that merely emulates the results of a sharp interface efficiently, even when the
interface width utilized is rather diffuse –or ”thin”.

A detailed discussion of how an alloy phase field model can emulate the sharp interface model of
Eqs. (6.34) and (6.36), as well as the subtleties of eliminating undesired kinetics effects is discussed in
detail in Appendix (C). For the reader wishing to forego the mathematical details, it is sufficient to review
the first sections of Appendix (C) and summary in section (C.9). The ideas discussed in those subsections
are applied to a specific example in section (6.7).

6.7 Case Study: Analysis of a Dilute Binary Alloy Model

It is instructive to illustrate the concepts of this chapter by a concrete example. The starting point of
this section is the free energy functional in Eq. (6.10) with f̄mix

AB (φ, c, T ) given in Eq. (6.17), and the
dynamical equations of Eq. (6.34) and (6.36). The idea here is to analyze model’s properties, including
its thin interface properties, a pre-requisite limit if one wishes to simulate low undercooling regime
quantitatively. Readers of the phase field literature will recognize the development of this model as the
special case studied in Echebarria et. al. [59].

6.7.1 Interpolation functions for f(φ, c)

It should be clear at this point that the choice of P (φ) that modulates the bulk behavior of S(φ) and
G(φ) is irrelevant; the only requirement is that all choices have the same bulk limits. In fact, S(φ) and
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G(φ) can each have its own, separate interpolation function, i.e.,

f̄mix
AB (φ, c, T ) =

RTm
Ω

[c ln c− c] + fA(Tm)−∆T

[
sL −

L

Tm
g̃(φ)

]
+ [εL + ∆εḡ(φ)] c (6.38)

where g̃(φ) is some function that interpolates entropy between solid (φ = φs) and liquid (φ = 0), while
ḡ(φ) in another function that similarly interpolates the internal energy between its two bulk values. Other
definitions are Tm ≡ TA is the melting temperature of species A, ∆T = T − Tm, R is the natural gas
constant and Ω is the molar volume of the alloy 3. The parameter sL is the entropy of the liquid, εL(εs)
are the internal energy of the liquid(solid), ∆ε = εs − εL and L is the latent heat of fusion.

The function g̃(φ) is constructed to satisfy g̃(φ = 0) = 0, g̃(φ = φs) = 1 and 0 < g̃(φ) < 1 for
other values of φ. An explicit form that will be used in the calculations that follow is g̃(φ) is chosen as
g̃(φ) = φ3(6φ2− 15φ+ 10). The function ḡ(φ) is chosen to have the same limits as g̃(φ). Its explicit form
is chosen to be

ḡ(φ) =
1

ln k
ln [1− (1− k)g̃(φ)] (6.39)

where k is the partition coefficient of the dilute binary alloy. It appears that the specific choice of ḡ(φ)
in Eq. (6.39) has been dropped out of thin air. It will be appreciated below that ḡ(φ) has, in fact, been
”back-engineered” so that the phase field and concentration fields completely decouple at steady state
for a flat, stationary interface, a ”trick” first used in Ref. [59].

6.7.2 Equilibrium Phase Diagram

Consider the mean field properties of the bulk terms of the free energy Eq. (6.38), starting first with
the calculation of the equilibrium phase diagram of this alloy. The starting point is the generalized bulk
chemical potential

µ ≡ ∂f̄mix
AB (φ, c)

∂c
=
RTm

Ω
ln c+ εL + ∆εḡ(φ) (6.40)

The chemical potential within each phase is found by substituting the appropriate limits of φ into
Eq. (6.40), which gives

µeq
s =

RTm
Ω

ln cs + ∆ε+ εL

µeq
L =

RTm
Ω

ln cL + εL (6.41)

where cs and cL represent equilibrium solid and liquid concentrations at temperature T . In equilibrium
µ = µeq and so setting µeq

s = µeq
L ≡ µeq gives the equilibrium partition coefficient, i.e.

k ≡ cs
cL

= e−Ω∆ε/RTm (6.42)

or, equivalently, ∆εΩ/RTm = − ln k.

3The division by Ω merely makes the units of the free energy density from J/mole to J/volume, to make it appropriate
for integration in the free energy functional.
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Solving µeq = µeq
s , µeq = µeq

L and f(cs, φo = φs) − f(cL, φo = 0) = µeq(cL − cs), gives µeq and the
liquidus line of a dilute ideal binary alloy. The results is

T = Tm −
[
RT 2

m(1− k)

LΩ

]
︸ ︷︷ ︸

mL

cl (6.43)

where the liquidus slope of the alloy, mL, is indicated in the large square bracket.

6.7.3 Equilibrium co and φo profiles

The equilibrium (i.e. steady state) concentration profile across a stationary planar solid-liquid interface
is found by considering the equilibrium chemical potential µeq. This is a constant given by

µeq =
RTm

Ω
ln co(x) + εL + ∆εḡ(φo(x)) (6.44)

where co(x) is the equilibrium concentration field across the solid liquid interface of some grain and φo(x)
tracks the planar steady state interface profile between solid and liquid. Solving for co(x) and using the
second of Eqs (6.41) to eliminate εL − µeq gives

co(x)

clo
≡ co(φo(x))

clo
= e[ln kḡ(φo(x))] (6.45)

where clo has been defined as the reference liquid concentration at a given quench temperature. Using
Eq. (6.39) the steady state concentration can equivalently be written in terms of g̃(φ0),

co(φo(x))

clo
= [1− (1− k)g̃(φo(x))] (6.46)

The equilibrium phase field profile, φo(x) across a planar solid-liquid interface (parameterized by x)
is given by solving the Euler Lagrange equation δF/δφ = 0 in 1D,

W 2
φ

d2φo
dx2

− ∂g(φo)

∂φo
− 1

H

[
∆TL

Tm

∂g̃(φo)

∂φo
+ ∆ε

∂ḡ(φo)

∂φo
co(φo)

]
= 0 (6.47)

(where Wφ =
√
εφ/H). Expressing L in terms of ∆T using Eq. (6.43) and using Eqs. (6.39) and (6.45)

shows that the large bracketed term in Eq. (6.47) actually vanishes, i.e.,

−∆TL

HTm

[
g̃′(φo) +

Tm∆ε

L∆T
ḡ′(φo)co(φo)

]
= 0 (6.48)

(primes denote derivatives with respect to φo). The steady state phase field profile is thus determined
analytically by solving

W 2
φ

d2φo
dx2

− ∂g(φo)

∂φo
= 0 (6.49)

For g(φ) = φ2(1 − φ)2, the solution of Eq. (6.49) is a simple hyperbolic tangent profile, φo(x) =[
1− tanh

(
x/
√

2Wφ

)]
/2, where x denotes the distance normal to the interface. It should be emphasized
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that it is only possible to make φo independent of co(x) for the specific relationship between ḡ(φ) and
ḡ(φ) made in Eq. (6.39). For general choices of these functions, φo(x) will depend on co(x). Substituting
φo(x) into Eq. (3.18) gives the surface tension of this dilute binary alloy model,

σsl =

√
2

6
WφH (6.50)

Comparing Eq. (6.49) and the Eq. (C.40) in section (C.6.1) shows that Eq. (6.49) is the same as the
lowest order phase field equation (C.40). The lowest order phase field formally determines the surface
tension of the phase field model (i.e. Eq. (6.50)) only in the limit of small Wφ/do. It turns out, however,
that the property in Eq. (6.48) actually makes it possible to model the surface energy of this model with
Eq. (6.50) for all values of the interface width Wφ

4.

6.7.4 Dynamical equations

It is instructive to re-cast the dynamical phase field equations (6.34) and (6.36) for the dilute alloy
into a form that will be useful when examining the model’s thin interface limit. This is done by first
re-expressing ∂f̄mix

AB (φ, c, T )/∂φ as follows:

∂f̄mix
AB (φ, c, T )

∂φ
=

∆TL

Tm
g̃′(φ) + ∆εḡ′(φ)c (6.51)

=
∆TL

Tm
g̃′(φ)−∆ε

(1− k)g̃′(φ)

ln k[1− (1− k)g̃(φ)]
c

=

(
∆TL

Tm
− cl0∆ε(1− k)

ln k

c

co(φ)

)
g̃′(φ)

=

(
clo∆ε(1− k)

ln k

)(
ln k∆TL

cloTm∆ε(1− k)
co(φ)− c

)
g̃′(φ)

co(φ)

=
clo∆ε(1− k)

ln k
{ co(φ)− c } g̃

′(φ)

co(φ)

where Eq. (6.39) was used to eliminate ḡ′(φ) from the first line of Eq. (6.51), while Eq. (6.46) was
used to go from the second to the third line. Using the liquidus line to express the latent heat as
L = RT 2

m(1 − k)/(ΩmL) and eliminating L from the fourth line results in the fifth line. Use is also
made of the identity from the equilibrium phase diagram, ∆T/(mLc

l
o) = 1, and the definition of ln k

following Eq. (6.42). It is noted that Eqs. (6.39) and (6.46) can also be used to write g̃′(φ)/co(φ) =
− [ln k/(1− k)] ḡ′(φ)/clo, which can be used to express Eq. (6.51) in the equivalent form

∂f̄mix
AB (φ, c, T )

∂φ
= −∆ε (co(φ)− c) ḡ′(φ) (6.52)

= −RTm ln k

Ω

∆T

mLclo
(c− co(φ)) ḡ′(φ)

The form of ∂f̄mix
AB /∂φ can be further simplified by eliminating c(≡ c(~x)) in Eq. (6.52) with respect to

a dimensionless chemical potential, u, defined relative to the equilibrium chemical potential of the liquid

4This is possible because for the particular choices of ḡ(φ) and ḡ(φ) made here, ∂f̄mix
AB (φ, c)/∂φ vanishes to all orders for

a steady state corresponding to a flat stationary interface.
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µeq (e.g. Eq. (6.41)), i.e.,

u =
Ω

RTm
(µ− µE) (6.53)

=
Ω

RTm

(
RTm

Ω
ln c+ ∆εḡ(φ) + εL −

RTm
Ω

ln clo − εL
)

= ln

(
c

clo

)
− ln kḡ(φ)

= ln

(
c

clo [1− (1− k)g̃(φ)]

)
where the definition of µ from Eq. (6.40) has been used in the first line of Eq. (6.53), while the relation
ln k = −(Ω/RTm)∆ε has been used in the second line and Eq. (6.39) has been used in the third line.
Equations (6.46) and (6.53) can be used to write(

c(~x)

clo
− co(φ)

clo

)
ḡ′(φ) = [1− (1− k)g̃(φ)] (eu − 1)ḡ′(φ)

= − (1− k)

ln k
(eu − 1)g̃′(φ) (6.54)

where ḡ has been eliminated in favour of g̃ using Eq (6.39). Substituting Eq. (6.54) in Eq, (6.52) gives

1

H

∂f̄mix
AB (φ, c, T )

∂φ
=

RTm ln k

ΩH

∆T

mLclo
(c(~x)− co(φ)) ḡ′(φ)

=
RTm ln k

ΩH

∆T

mLclo

(1− k)clo
ln k

(eu − 1)g̃′(φ)

= λ̄∆cF (eu − 1)g̃′(φ) (6.55)

where

∆cF ≡ (1− k)clo

λ̄ =
RTm
ΩH

(6.56)

Using the manipulations above, the final form of the dynamics for the phase field equations for the
dilute alloy become

τ
∂φ

∂t
= W 2

φ∇2φ− ∂g(φ)

∂φ
− λ̄∆cF (eu − 1)g̃′(φ) (6.57)

∂c

∂t
= ∇ · (DLQ(φ)c(1− c)∇u) (6.58)

u = ln

(
c

clo [1− (1− k)g̃(φ)]

)
(6.59)

It is clear that at steady state, time derivatives vanish, u = 0 and co(x) and φo(x) are automatically
described by their equilibrium solutions. By re-scaling time by t̄ = t/τ and space by x̄ = x/Wφ,
Eqs. (6.57)-(6.59) can be characterized by three dimensionless parameters: λ̄, D̄ ≡ DLτ/W

2
φ and clo.
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It is noted that Eqs. (6.57)-(6.59) can further be modified to deal with directional solidification by
making the substitution

eu → eu +
G(z − Vp t)

∆To
(6.60)

where ∆To = |mL|clo is the directional solidification temperature range on the phase diagram, where Vp
is the pulling speed of the sample through a thermal gradient G. This extension is treated in detail in
[59] and will not be discussed further here.

6.7.5 Thin interface properties of dilute alloy model

It is shown in Appendix (C) that, in their present form, Eqs. (6.57)-(6.59) cannot be exactly mapped
onto the sharp interface model of section (6.2.2), for a diffuse interface. Several so-called ”correction”
terms emerge in the corresponding flux conservation and Gibbs-Thompson conditions. These terms are
summarized in section (C.8) (labelled as ∆F , ∆H and ∆J) 5. As discussed previously, these terms
are vanishingly small at low solidification rates or when Wφ � do. When the interface is smeared for
numerical expedience however, they are artificially amplified. They must thus be eliminated –or kept
under control– in order to self-consistently be able to emulate the precise sharp interface kinetics of the
model in section (6.2.2) –and to be able to obtain tractable relationships for do and β (see Eqs. (6.73)
and (6.74)). Subsections (6.7.6) and (6.7.7) examine a modification of the above dilute alloy model to
make the aforementioned correction term vanish.

Readers wishing to skip the details of the asymptotic analysis of this model can simply make use of
the modified model in Eqs (6.63)-(6.67), for which the corresponding sharp interface limit is given by
Eqs. (6.72)-(6.77).

6.7.6 Non-variational verision of model (optional)

Equations (6.57)-(6.59) are mapped onto those of the generic alloy model in Appendix (C) by making
the following associations:

w → H
1

w

∂f̄mix
AB (φ, c)

∂φ
= λ̄∆cF (eu − 1)g̃′(φ)

q(φ, c) =
Ω

RTm
Q(φ)c

µ = µeq +
RTm

Ω
u

5(Optional) The reader following Appendix (C) will have noticed that section (C.7.5) formally requires that ∂φf(φin0 , c
in
0 )

be independent of the co-ordinate (ξ) normal to the interface. This is indeed the case here since, and it can be shown that

1

H

∂f̄mix
AB (φ, c)

∂φ
= λ̄∆cF (eu − 1)g̃′(φ) = λ̄∆c

{
exp

(
µ− µo0(0±)

RTm/Ω

)
+

(
µo0(0±)− µFEq

RTm/Ω

)
− 1

}
g̃′(φ) (6.61)

where ∆c ≡ cL − cs and cL and cs are the lowest order liquid and solid concentrations at the interface (which contain
a small curvature and velocity correction from their equilibrium values), while µFEq is the equilibrium chemical potential

and µo0(0±) is the lowest order chemical potential at either the solid(”−”) or liquid(”+”) interface, which depends only on
curvature, as assumed sections (C.7.2) and (C.7.3). This equation makes manifest that to lowest order, the driving force
contains curvature dependent deviations from equilibrium.
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εc = 0 (6.62)

The parameters τ , Wφ and DL have the same meaning in Appendix (C) as they do in this chapter.
Appendix (C) derives the thin interface limit of the Eqs. (6.57)-(6.59) by expanding φ and c to second
order in the small parameter ε = Wφ/do. It should be noted that ε is the same small parameter used
in classical sharp interface analyses. However, the results of this specific analysis shown here will end
up being valid in the diffuse interface limit, Wφ ∼ do, so long as the thermodynamic driving force for
solidification (or any other transformation described by this mathematical model) is small.

Section (C.9) shows that the spurious sharp-interface corrections ∆F , ∆H and ∆J can be eliminated
from the thin interface limit of Eqs. (6.57)-(6.59) by altering their form so that they are no longer derivable
from a free energy functional. Specifically, the phase field model is converted into a modified system of
non-linear partial differential equations that are mathematically ”rigged” so as to emulate a desired
sharp interface model. For the model in this section, these alterations have already been developed by
Echebarria and co-workers [59]. Specifically, Eqs. (6.57)-6.59) are modified to

τ
∂φ

∂t
= W 2

φ∇2φ− ∂g(φ)

∂φ
− λ̄∆cF (eu − 1)g̃′(φ) (6.63)

∂c

∂t
= ∇ · (DLQ(φ)c∇u) +∇ ·

(
Wφa(φ)U(φ, c)

∂φ

∂t

∇φ
|∇φ|

)
︸ ︷︷ ︸

add ~Ja

(6.64)

u = ln

(
c

clo [1− (1− k)h(φ)]

)
︸ ︷︷ ︸

changed g̃(φ) to h(φ)

(6.65)

In these phase field equations the chemical potental has been modified by the replacement of g̃(φ) by
h(φ), a free function that has the same limits as g̃(φ). Its form will be specified below. The added flux

source, ~Ja, is added to correct for the effects of diffuse interface; U will be specified below. It is also
required that ∂φf̄

mix
AB (φin

0 , c
in
0 ) satisfy Eq. (C.134), which is, indeed, the case for this model.

The next subsection will study a specific example of Eqs. (6.63)-(6.65). To do so, it is instructive to
re-scale φ such that it varies from φL = −1 in the liquid to φs = 1 in the solid. This is done by defining
a ”new” order parameter φnew = 2φold − 1 (0 ≤ φold ≤ 1). The previous interpolation functions and
dimensionless chemical potential u now become

g(φ) = −φ
2

2
+
φ4

4

g̃(φ) =
15

16

(
φ− 2φ3

3
+
φ5

5

)
u = ln

(
2c

clo [1 + k − (1− k)h(φ)]

)
(6.66)

where now τ , Wφ and H appearing in the equations are effective constants, related to their original
definitions as shown previously. Finally, the remaining functions in Eq. (6.63)-(6.65) are chosen as

h(φ) = φ

Q(φ) =
(1− φ)

[1 + k − (1− k)φ(x)]
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U(φ, c) = (1− k)cloe
u

a(φ) = at ≡
1

2
√

2
(6.67)

6.7.7 Effective sharp interface parameters of non-variational model (optional)

Calculating the effective sharp interface parameters of Eqs. (6.63)-(6.65) (with Eqs. (6.66) and (6.67))
requires knowledge of lowest order concentration and phase field, which are given by the solutions of
Eq. (C.52) for φin

0 (x) and Eqs.(C.58) and (C.72) for cin0 (x). These are given by 6,

c0(x) =
cL
2

[1 + k − (1− k)h(φo(x))]

φo(x) = − tanh
(
x/
√

2
)

(6.68)

where cL is the concentration on the liquid side of the interface of the corresponding sharp interface
model. For the specific definitions adopted in Eqs. (6.66) and (6.67), the following relations are derived:
q(φo, co) = (Ω/RTm)Q(φo)co(φo) = (Ω/RTm)cL(1−φo)/2, which has limits q− = 0 and q+ = ΩcL/RTm.
Moreover, co(x)− cs = cL(1− k) [1− φo] /2 while co(x)− cL = cL(k − 1) [1 + φo] /2.

Using the above forms of co(x) and φ0(x) it is instructive to first check that the so-called correction
terms ∆F , ∆H and ∆J identified in Appendix C -which would otherwise spoil the phase field model’s
connection to the tradition sharp interface model– vanish. From Eqs. (C.150)

∆F ≡ F+ −F− =
RTm(1− k)

2Ω

{∫ ∞
0

(φo(x) + 1) dx−
∫ 0

−∞
(1− φo(x)) dx

}
(6.69)

It is clear from the symmetry imposed on φo about x = 0 that ∆F ≡ F+−F− = 0. In the same manner
∆H becomes

∆H = H+ −H− =
(1− k)cL

2

{∫ ∞
0

(φo(x) + 1) dx−
∫ 0

−∞
(1− φo(x)) dx

}
(6.70)

which is proportional to ∆F and also vanishes. Finally, the ∆J correction becomes,

∆J = J+ − J− =
ΩcL
RTm

{∫ ∞
0

(φo(x) + 1) dx−
∫ 0

−∞
(1− φo(x)) dx

}
(6.71)

which also vanishes. Note that the above equations (which come from Appendix (C)) formally use
cL, the lowest order concentration on the liquid side of the interface, which has a small curvature and
velocity dependent shift from its equilibrium flat interface value clo. This does not affect the vanishing
of the correction terms as cL scales out of Eqs.(6.69)-(6.71). Furthermore, the difference between using
clo versus cL in the integrals F ≡ F+ = F− and H ≡ H+ = H− and J ≡ J+ = J− will be seen
below to yield only higher order curvature and velocity corrections to the effective sharp interface model
(discussed further below). It is thus reasonable to simply approximate cL → clo in integrals that arise
from the asymptotic analysis of this model.

6For those simultaneously reading Appendix (C), lowest order is in the sense of the matched asymptotic series expansion
of φ and c expressed in Eqs. (C.16). For simplicity, the notation cino (x) and φin0 (x) has been dropped in this subsection in
favour of the simpler notation co(x) and φo(x).
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The effective sharp interface model emulated by Eqs. (6.63)-(6.65) (using the definitions in Eqs. (6.66)
and (6.67)) is thus specified by Eq. (C.130) for the Gibbs-Thomson condition and the Eq. (C.131) for the
flux conservation equation, with ∆F = ∆H = ∆J = 0 as shown above. It now remains only to compute
the effective capillary length do and interface kinetic coefficient, β. To do so, the chemical potential on
left hand side of Eq. (C.130) is expanded near the solid or liquid equilibrium value. Considering the
liquid side gives, µo(0+) − µF

Eq = Λ+(co(0+) − clo), where Λ+ ≡ ∂ccf̄
mix
AB (φo = −1, clo) = (RTm/Ω clo).

Substituting this into the left hand side of the Gibbs-Thomson condition gives

co(0+)

clo
= 1− (1− k) do κ− (1− k)β vn (6.72)

where

do = σφ
Wφ

λ̂
(6.73)

β =
τσφ

Wφλ̂

(
1− a2λ̂

D̄

[
cL
clo

])
(6.74)

with λ̂ and a2 defined by

λ̂ = (1− k)2 clo λ̄ =
RTm(1− k)2 clo

ΩH
(6.75)

a2 =
K̄ + JF̄

2Jσφ
(6.76)

and

J ≡ 16/15

F̄ ≡
∫ ∞

0

(φo(ξ) + 1) dξ

K̄ ≡
∫ ∞
−∞

∂φo
∂ξ

ḡ′(φo)

{∫ ξ

0

φo(x)dx

}
dξ

ḡ(φ) = φ− 2φ

3
+
φ5

5
(6.77)

It is noted that to arrive at the coefficients in Eqs. (6.73)-(6.76), one begins with Eq. (C.130) were K is
given by Eq. (C.151), while F is given by either of Eqs. (C.150) and σφ by Eq. (C.64). Straightforward
algebra then gives

K + F ∆c

σφ
=

(
RTm(1− k)2 cL

Ω

)
K̄ + J F̄

2Jσφ
(6.78)

Unlike the case for a pure material, it is not possible for alloys to simulate the limit β = 0 exactly. That
is because of the extra factor cL/c

l
o in Eq. (6.74). Indeed, to do so precisely requires that D̄ = a2λ̄(cL/c

o
l ),

which requires that the curvature-dependent deviation of cL from clo is computed at each point at the
solid-liquid interface. However, it is relatively straightforward to show from the O(ε) treatment of the
φ equation (see Appendix (C)) that cL/c

l
o ≈ 1 − c1doκ − c2(τ/λWφ)vn, where c1 and c2 are constants.
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As discussed above, in most cases the curvature and velocity dependent corrections can be approximated
to be very small, particularly for experimentally relevant solidification rates, such as those achieved in
continuous casting and even some forms of thin slab and strip casting. As a result such curvature and
velocity correction can be neglected and it is reasonable to set cL/c

l
o ≈ 1 in Eq. (6.74).

For the function chosen here F̄ =
√

2 ln 2, K̄ = 0.1360 and σφ = 2
√

2/3. For readers wishing to

connect this derivation to the one published in Ref. [59] it should be noted that their λ̂, call it λ̂E, is

related to the one here by λ̂E = (15/16)λ̂. Substituting this re-scaling into their expressions for do and β
gives Eq. (6.73) where σφ is replaced by the variable a1 ≡ σφ/J ≈ 0.8839 and Eq. (6.74) with a2 replaced
by (K̄ + J F̄ )/(2σφ) ≈ 0.6267.

Using Eqs. (6.73) and Eq. (6.74), two of λ̂, τ and Wφ can be determined by connecting the phase field
equations to the measurable constants do and β. One parameter, however, still remains undetermined.
This implies, for example, that it is possible to easily model a unique surface tension and kinetic coefficient
(even β = 0), with a diffuse Wφ (compared to do). This is not possible in the strict limit of the
sharp interface limite (when Wφ → 0). This was demonstrated in section (5.7) for thermally controlled
solidification. The ability to obtain converged results independent of the ratio Wφ/do for the binary alloy
model was demonstrated quantitatively in Refs. [113, 59, 76, 195], and will be studied in the next section.
As discussed before, the incentive to make Wφ diffuse (or ”thin”) is to dramatically reduce simulations
times, a feature critical to quantitative modeling of solidification.

6.8 Numerical Simulations of Dilute Alloy Phase Field Model

Numerical simulation of the a binary alloy phase field model proceeds analogously to that of model C
for a pure material. A code for studying the dilute alloy model are found in the directory ModelC alloy
on the CD that accompanies this book. The pseudo-code for modeling an alloy is shown in Fig. (6.6)
using the model studied in section (6.7.6) as an example. The main differences here is the change of
driving force to eu − 1 in the phase field equation and the use of the fictitious anti-trapping flux in the
concentration equation.

6.8.1 Discrete equations

The discrete version of equation Eqs. (6.63) for φ is given by

φn+1(i, j) = φn(i, j)

+
∆t̄

A2[φ(i, j)]

{
1

∆x̄

(
JR(i, j)− JL(i, j)

)
+

1

∆x̄

(
JT (i, j)− JB(i, j)

)
− g′(φn(i, j))− λ̂

1− k
(EUn(i, j)− 1) g̃′(φn(i, j))

}
, (6.79)

where (t̄ = t/τ) and space (x̄ = x/Wφ). The array EUn(i, j) ≡ exp [u(φn(i, j), cn(i, j))] and u is the
reduced chemical potential given by the last of Eqs. (6.66). It is constructed by the phase field (φn(i, j))
and concentration (cn(i, j)) at the time step n. The fluxes JR, JL, JT , JB are calculated exactly as
in Eqs. (5.56) using the definitions in Eqs. (5.57)-(5.58). Surface energy anisotropy can similarly be
simulated here using the same form of the anisotropy as in section (5.7), calculated by Eqs. (5.59).
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Figure 6.6: Flowchart of algorithm requied to simulte Model C for binary alloy solidification.

The update of the concentration equation can be efficiently done using a finite volume method since
it is a flux conserving equation. The discrete update equation for the concentration cn+1(i, j) is given by

cn+1(i, j) = cn(i, j)− ∆t̄

∆x̄
{(JnR − JnL ) + (JnT − JnB)} (6.80)

where it is assumed that ∆x = ∆y. The notation JnR ≡ ~J |R · î is the component of the flux along the
unit normal î and evaluated on the right edge of the finite volume in Fig. (A.1). For this model being

examined here the flux ~J is given by [113, 59, 119]

~J = −D̄ Q(φ) c∇u− at(1− k)eu
∂φ

∂t

∇φ
|∇φ|︸ ︷︷ ︸
−n̂

(6.81)

where concentration and diffusion have been rescaled according to

D̄ ≡ DLτ/W
2
φ

c→ cactual/clo (6.82)

The fluxes JnL , JnT/B are similarly defined as the components of the flux along î and ĵ, respectively,

and evaluated on the left, top/bottom edges of the finite volume, respectively. It is seen in Fig. (A.1)

that JnR requires that ~J be evaluated at the locations (i ± 1/2, j) and (i, j ± 1/2). However, no explicit
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information is known at these points, as the mesh is designed to track φ and c at discrete co-ordinates
which, as shown in the figure, jump by whole integers. To address this, interpolation from neighbouring
points at (i ± 1, j ± 1) needs to used. Similarly for the other terms. The procedure for doing this is
illustrated below for JnR and is analogously constructed for the other terms

Referring to the right hand edge of the control volume in Fig. (A.1), the quantities that enter JnR are
evaluated at (i+ 1/2, j) as follows:

Q (φn(i+ 1/2, j)) cn (i+ 1/2, j) =Q

(
φn(i+ 1, j) + φn(i, j)

2

)(
cn (φ(i+ 1, j)) + cn (φ(i, j))

2

)

∇u · î ≡ ∂un

∂x

∣∣∣∣
i+1/2,j

=
EUn (i+ 1, j)− EUn (i, j)

∆x
(
EUn (i+ 1, j) + EUn (i, j)

)
/2[

eu
∂φ

∂t

]n+1

(i+1/2,j)

=

(
eu(φn(i+1,j),cn(i+1,j))+eu(φn(i,j),cn(i,j))

2

)(
∂tφ|n+1

(i+1,j)+∂tφ|
n+1
(i,j)

2

)
∂φn

∂x

∣∣∣∣
i+1/2,j

=
φ(i+ 1, j)− φ(i, j)

∆x
(6.83)

where ∂φ/∂t at time n + 1 is evaluated after the φ equation is updated 7 Note that for calculating y
derivatives of φ at the right edge of the volume (for ∇φ) requires both the neighbors and next nearest
neighbors of the point (i+ 1, j) (labelled by ”x” in Fig. (A.1)). Thus,

∂φ

∂y

∣∣∣∣
i+1/2,j

=
(φ(i, j + 1)− φ(i, j − 1)) + (φ(i+ 1, j + 1)− φ(i+ 1, j − 1))

2(2∆y)
(6.84)

Equation (6.84) is simply the average of two y direction derivatives at (i, j) and (i+1, j). With the above
discretizations, JnR becomes

JnR = −D̄Q

(
φn(i+ 1/2, j), cn (i+ 1/2, j)

)
∂un

∂x

∣∣∣∣
i+1/2,j

− at(1− k)

[
eu
∂φ

∂t

]n+1

(i+1/2,j)

n̂Rx (6.85)

where

n̂Rx =

∂φn

∂x

∣∣∣
i+1/2,j{(

∂φn

∂x

∣∣∣
i+1/2,j

)2

+
(
∂φ
∂y

∣∣∣
i+1/2,j

)2
}1/2

(6.86)

The terms JnL , JnT and JnB in the other directions are calculated analogously.
Analogously to the case of the pure material, the natural choice of boundary conditions for concen-

tration are zero flux boundary cnditions (since generally mass does not enter or leave the system, and
mirror boundary conditions. This requires that the c, φ and EU arrays are buffered with one layer of
ghost nodes in each spatial dimension. The ghost nodes are set prior to each time iteration as shown in
Eq. (5.7.2). It also noted that the stability of the numerical scheme presented here is analogous to the
one for a pure material studied in section (5.7). In this case mass transfer, as the fastest process, controls
the stability by requiring that ∆t̄ < ∆x̄2/

(
4 D̄
)
.

7the function ∂tφ can be considered a ”known” function from the point of view of the concentration equation since it
updated in a separate application of the discrete phase field equation prior to entering the subroutine where concentration
is updated

104



6.8.2 Convergence properties of model

Figure (6.7) shows an image sequence in the simulation of dendrite in a dilute binary alloy. An initial
seed crystal is placed in an initially supersaturated liquid phase. The concentration shown is relative
to clo, the equilibrium concentration on the liquid side of the interface at the quench temperature. The
average alloy concentration c∞ was chosen such that the supersaturation was

Ω ≡ clo − c∞
(1− k)clo

= 0.55 (6.87)

The anisotropy was set to ε4 = 0.05. An initial seed was placed in the bottom-left corner of the simulation
domain. Its radius was R = 10Wφ. The φ field was set to φ = 1 in the solid and φ = −1 in the liquid.
The chemical potential was initialized from the the initial condition eu(t = 0) = 1 − (1 − k) Ω, which

also uniquely defines the initial concentration field c. The coupling coefficient was chosen to be λ̂ = 3.19,
while ∆x̄ = 0.4 and ∆t̄ = 0.008.

Figure 6.7: Isothermal dendrite growth sequence in an alloy. The colour map represents concentration.
Cold colours represent low concentration and warm colours high concentration.

The sharp interface dynamics of the solid-liquid interface in Fig. (6.7) are governed by Eqs. (6.73)
and (6.74), which relate the capillary length and interface kinetics coefficient to the interface width Wφ

and characteristic time scale τ using precisely the same form that was used in the case of a pure material
in Eq. (5.64). 8. This is not a coincidence but rather by construction of the specific free energy of
the dilute alloy model studied in this section. Indeed, much of the essential physics of the pure model
in section (6.8.2) remain unchanged in binary alloy (where, essentially thermal diffusion in that case is
replaced by mass transport in this case). As with solidification of a the pure material, it turns out that

simulations of the dimensionless steady state dendritic tip speed will be independent of the choice of λ̂,
or equivalently Wφ, for sufficiently small Wφ. This is demonstrated in Fig. (6.8), which compares the

dendrtie tip speed for the same undercooling and two values of λ̂. This figure is the alloy analogue of
Fig. (5.7).

8This equivalence is only true to leading order curvature and interface velocity corrections.
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Figure 6.8: Dendrite tip speeds for two values of the inverse nucleation barrier λ̂. The parameter λ̂ is
chosen via Eqs. (6.73) and (6.74) to fix the interface kinetics time (τ) and interface width (Wφ) in a
manner consistent with the sharp interface model. Scaling the tip speed τ/Wφ (equivalent to do/D) thus
makes the dimensionless tip speed universal and dependent only on the supersaturation.

It also is instructive to examine the convergence properties afforded by the use of the the anti-trapping
flux in Eq. (6.64). Recall that this flux term was introduced as a mathematical remedy to eliminate the
so-called spurious kinetics and excess solute trapping that occurs in the limit of a diffuse interface in an
alloy phase field model with very asymmetric diffusion between the solid and liquid phases. Figure (6.9)
compares the centre-line concentration in of the horizontal branch of the dendrite shown in Fig. (6.7)
with and without the use of anti-trapping. The characteristic concentration jump and solute rejection
profile in the liquid is shown. It is clear from Fig. (6.9) that neglecting the use of the anti-traping flux
in the phase field equations (i.e. a(φ) = 0) exaggerates the impurity level in the solid. This is mainly
due to the effect of solute trapping imposed by the so-called ∆F correction term, which was discussed
in section (6.7.5). This effect scales with the interface width and so it will be amplified even further for

larger values of Wφ or, equivalently λ̂, which is typical of more efficient calculations.

6.9 Other Alloy Phase Field Formulations

Thus far phase field theories have been presented in terms of two physically motivated parameters; the
order parameter and concentration field. This section studies an alloy phase field methodology that is
somewhat different from the standard form that has been discussed thus far, but which is very often
used in the literature. Once again this approach begins with the standard alloy phase field model in
Eqs. (6.34)-(6.36). The use of these equations with a general bulk free energy was originally introduced
by Boettinger and co-workers [209, 210] (hereafter refereed to as the WMB model). As discussed above,
this model has the severe limitation that in equilibrium ∂,φf(φo, co) 6= 0 for a general bulk free energy.
That makes it impossible to reproduce an given interface energy reliably using very diffuse interfaces. In
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Figure 6.9: Dendrite centre line concentration for the cases of λ̂ = 3.19 with (bottom) and without
(top) the use of anti-trapping. The straight dashed line is the prediction of the curvature-corrected solid
concentration in the solid, as predicted by the Gibbs-Thomson condition.

the previous section it was shown that one approach to remedy this problem is to judiciously choose the
entropy and total energy interpolating functions. In this section studies a different phase field formulation
for binary alloys due to Kim and co-workers [121]. In this approach rather than modify interpolation
functions, two new, fictitious concentration fields are introduced. These are made implicit functions of
the phase field φ and concentration c in such a way as to achieve a similar decoupling as in the example
studied above.

6.9.1 Introducing fictitious, or auxiliary, concentration fields

Kim and co-workers extended the quantitative applicability of the WMB model by introducing two
fictitious concentration fields CL(~x) and CS(~x), associated with each phase. It it assumed in their
formalism that the physical concentration c can be expressed as an interpolation of CL and Cs according
to

c = h(φ)Cs + (1− h(φ))CL (6.88)

where h(φ) is an interpolation function that satisfies h(φ = φs) = 1 in the solid phase and h(φ = φL) = 0
in the liquid phase. The idea of Eq. (6.88) is that the interface region is actually a certain fraction of
solid (h(φ)) and liquid (1− h(φ)), The total composition in the interface is the weighted combination of
the solid and liquid concentrations, Cs and CL. The concentrations CL and Cs are constrained such that
the solid and liquid fractions though the interface satisfy equal chemical potentials in terms of CL and
Cs i.e.,

∂fs(Cs)

∂c
=
∂fL(CL)

∂c
(6.89)

where fs(Cs) and fL(CL) are the free energies of the solid and liquid phase, respectively. (The notation
∂,cfs(Cs) ≡ ∂,cfs(c)|c=Cs). It should be noted that Eqs. (6.88) and (6.89) make CL and Cs functions of
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φ and c.
Another modification to the original WMB model introduced by Kim and co-workers is that the

original bulk free energy f(φ, c) appearing in the phase field model is written as

f(φ, c) = Hg(φ) + h(φ)fs(Cs) + (1− h(φ)) fL(CL) (6.90)

It is clear that the above definition of f(φ, c) reduces to the appropriate bulk phase expression far from the
interface where φ transitions between phases. The decomposition of f(φ, c) in terms of the non-physical
fields CL and Cs, and the associated conditions on CL and Cs, offers an alternative to manipulating the
choice of interpolation functions (i.e. the method used in section (6.7) for the binary alloy. The outcomes
in both cases is the same; the ability to decouple concentration from the surface tension calculation and
the ability to relate surface energy to interface width for arbitrarily diffuse interfaces. The trade-off in
this case is that extra work has to be done to determine Cs(φ, c) and CL(φ, c) at any time. This is
discussed next.

6.9.2 Formulation of phase field equations

In order to be able to solve the phase field equations of the WMB model, it is required to relate f,c(φ, c),
fφ(φ, c) and f,cc(φ, c) to Cs and CL. This is done by differentiating both sides of Eqs. (6.88) and (6.89)
implicitly with respect to c and φ, giving

1 = h(φ)
∂Cs
∂c

+ (1− h(φ))
∂CL
∂c

0 = h′(φ) (Cs − CL) + h(φ)
∂Cs
∂φ

+ (1− h(φ))
∂CL
∂φ

0 =
∂2fs(Cs)

∂c2
∂Cs
∂c
− ∂2fL(CL)

∂c2
∂CL
∂c

0 =
∂2fs(Cs)

∂c2
∂Cs
∂φ
− ∂2fL(CL)

∂c2
∂CL
∂φ

, (6.91)

where the prime denotes differentiation with respect to φ. The solution of these equations gives

∂Cs
∂c

=
∂ccfL(CL)

R(φ,CL, Cs)

∂CL
∂c

=
∂ccfs(Cs)

R(φ,CL, Cs)

∂Cs
∂φ

=
h′(φ) (CL − Cs) ∂ccfL(CL)

R(φ,CL, Cs)

∂CL
∂φ

=
h′(φ) (CL − Cs) ∂ccfs(Cs)

R(φ,CL, Cs)
(6.92)

where R(φ,CL, Cs) ≡ h(φ)∂ccfL(CL) + (1− h(φ)) ∂ccfs(Cs). From Eqs. (6.92) is it now straightforward
to derive the following useful relations

∂f(φ, c)

∂φ
= Hg(φ)−

(
fL(CL)− fs(Cs)−

dfL(CL)

dc
(CL − Cs)

)
h′(φ) (6.93)
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µ =
∂f(φ, c)

∂c
=
dfL(CL)

dc
=
dfs(Cs)

dc
(6.94)

∂2f(φ, c)

∂c2
=

∂ccfL(CL)∂ccfs(Cs)

R(φ,CL, Cs)
(6.95)

∂2f(φ, c)/∂φ∂c

∂2f(φ, c)/∂c2
= (CL − Cs)h′(φ) (6.96)

with which the final form of the phase field and impurity diffusion equations can be written in terms of
CL and Cs,

τ
∂φ

∂t
= W 2

φ∇2φ− dg

dφ
+

1

H

(
fL(CL)− fs(Cs)−

dfL(CL)

dc
(CL − Cs)

)
h′(φ) (6.97)

∂c

∂t
= DL∇ ·

[
Q(φ)

∂ccf(φ, c)
∇

(
∂f(φ, c)

∂c

)]
(6.98)

= DL∇ ·

[
Q(φ)

∂ccf(φ, c)
∇

(
∂fL,s(CL,s)

∂c

)]
(6.99)

= DL∇ ·

[
Q(φ)

(
h(φ)∇Cs + (1− h(φ))∇CL

)]
(6.100)

Equations (6.98)-(6.100) are three equivalent choices for the dynamics of impurity concentration. The last
version of the chemical diffusion equation (Eq. (6.100)) is obtained by noting that ∇fc = fcc∇c+ fcφ∇φ
and using Eq. (6.88). It is emphasized that expression ∂φf(φ, c) in the large square brackets of Eq. (6.97)
is in fact a function of φ and c through the implicit dependence of Cs and CL on these fields.

To model anisotropic surface tension in Eqs. (6.97) and (6.99), the gradient term W 2
φ∇2φ in Eq. (6.97)

has to be modified as in Eq. (6.37).

6.9.3 Steady state properties of model and surface tension

At equilibrium ∂c/∂t = 0 the concentration equation gives ∂cfL(CL) = ∂cfs(Cs) = µF
Eq, where µF

Eq is a
constant. This can only be true at all points if CL(x) = Ceq

L and Cs(x) = Ceq
s where Ceq

L and Ceq
s are

constants. The corresponding steady state φ equation thus becomes

W 2
φ

d2φo
dx2

− g′(φo) +
1

H

(
fL(Ceq

L )− fs(Ceq
s )−

dfL(Ceq
L )

dc
(Ceq

L − C
eq
s )

)
h′(φo) (6.101)

Multiplying Eq. (6.101) by dφo/dx and integrating from −∞ ≤ x ≤ ∞ immediately gives

fL(Ceq
L )− fs(Ceq

s )

Ceq
L − C

eq
s

= µF
Eq (6.102)

Equation (6.102) along with ∂cfL(Ceq
L ) = ∂cfs(C

eq
s ) = µF

Eq are the standard conditions for determining
the equilibrium solid and liquid concentrations, as well as the equilibrium chemical potential through the
interface, µF

Eq.
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Since at equilibrium CL and Cs are constant, the steady state concentration profile is simply given by

co(x) = h(φo)C
eq
s + (1− h(φo))C

eq
L (6.103)

This is analogous to the way that the model studied in section(6.7.3) has a steady state concentration
profile that depends only on the order parameter φ. Moreover, substituting Eq. (6.102) back into the
steady state φ equation gives

W 2
φ

d2φo
dx2

− g′(φo) = 0, (6.104)

which is identical to Eq. (6.49) and does not involve the concentration in φo. As a result, using Eq. (6.32)
the surface energy for the alloy phase field model of Eqs.(6.97) and (6.100) can be determined uniquely
in terms of Wφ and H, for arbitrarily diffuse interfaces. Thus the model of Kim and co-workers can
simulate an arbitrary free energy and emulate any surface tension, for diffuse interfaces.

6.9.4 Thin interface limit

It was seen that because at steady state with a flat interface, ∂φf(φo, co) = 0, the phase field model studied
in this section enjoys the property that the expression for the surface energy can be simply expressed
in terms the gradient energy coefficient and potential barrier height, for all interface widths Wφ. As it
stands however, this model is not immune to aforementioned thin interface kinetics that otherwise alter
the form of its effective sharp interface limit in the diffuse interface limit. As discussed above, since CL
and Cs are functions of φ and c, both ∂φ(φ, c) and µ = ∂cf(φ, c), and hence the phase field model itself,
are fundamentally of the form studied in Appendix (C) 9. Thus, the usual kinetic and thin interface
corrections ∆F , ∆H and ∆J discussed in Appendix (C) (see section (C.8) for a summary) also plague
this alloy phase field model.

Kim [119] recently extended the phase field model presented in this section so that the concentration
equation contains an anti-trapping flux term like that used in the dilute alloy model of section (6.7.5).
This modification is designed to eliminate the aforementioned spurious kinetic corrections. As discussed
in Appendix (C), the introduction of a fictitious flux term in the mass transport equation leads to a
non-varational form of the original phase field equations model but leads to a mathematical equivalence
of the thin interface limit of the phase field equations to the sharp interface model. Modification of
the model involves two steps. The first is the introduction of an anti-trapping flux to the concentration
equation, i.e.

∂c

∂t
= DL∇ ·

[
Q(φ)

∂,ccf(φ, c)
∇

(
∂fL,s(CL,s)

∂c

)
− ~Ja

]
(6.105)

where ~Ja denoted the anti-trapping flux. The second change required is that the interpolation function
in the chemical potential which modulates co(x) between one phase and another via φo must be altered.
In this case, the chemical potential ∂cfL,s(CL,s) (either s or L) is implicitly related to c(x) and φ(x)

through h(φo) in Eq. (6.88). Thus h(φ) can be altered to some arbitrary h̃(φ), which has the same limits
as h(φ) in the bulk phases. The anti-trapping, the new interpolation function h̃(φ) and Q(φ) provide
three degrees if freedom which can be chosen to make ∆F = ∆H = ∆J = 0. Given the length of such

9As required by the conditions of the main calculation of Appendix (C), it can be also shown that to lowest order
∂φf(φin0 , c

in
0 ) does not depend on the co-ordinate ξ normal to the interface.
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calculations, these details will not be discussed further here. The interested reader is referred to the
recent calculation of Ohno and co-workers [162] for the case of an ideal, dilute binary alloy. Furthermore,
Kim has recently extended the model described in this section to multiple solute components [119].

6.9.5 Numerical determination of Cs and CL

It is instructive to conclude this section by briefly discussing the numerical solution of Eqs. (6.97) and
(6.100). The simplest numerical algorithm for solving these these equations is as follows: Starting with
the fields {φ, c, CL, Cs} at time t = n∆t, Eqs. (6.97) is updated using a simple finite difference method
(see Appendix (A.1)). Equation (6.100) is then updated using a finite differences or a finite volume
method (see Appendix (A.2)). This yields φ and c at t = (n + 1)∆t. Using the updated c and φ fields,
Eqs. (6.88) and (6.89) are next solved self-consistently at all lattice sites to yield CL and Cs at time
t = (n+ 1)∆t. The solution of CL and Cs in terms of c and φ at any given lattice cite on the numerical
grid is done by solving

f1(Cs, CL) ≡ h(φ)Cs + (1− h(φ))CL − c = 0

f2(Cs, CL) ≡ ∂cfS(Cs)− ∂cfL(CL) = 0 (6.106)

The simplest way of solving these non-linear equations is using Newton’s method, outlined in in Ap-
pendix (B.3). This is an iterative scheme that start with an initial estimate for Cs and CL and progres-
sively improves this estimate via the iterative mapping Cn+1

s

Cn+1
L

 =

 Cns

CnL

+
1

W (Cns , C
n
L)

 ∂,ccfL(CnL) 1− h(φ)

−∂,ccfs(Cns ) h(φ)

 f1(Cns , C
n
L)

f2(Cns , C
n
L)

 (6.107)

where W (Cns , C
n
L) ≡ h(φ)∂,ccfL(CnL) + (1− h(φ)) ∂,ccfs(C

n
s ). Here n denotes the iteration step. Equa-

tion (6.107) is iterated until Cns and CnL stop changing appreciably, to some accuracy. This method while
simple demands that the initial guess is close to the real answer. This should not be a problem if φ and
c change slowly at each lattice site. The solution of Equation (6.107) at each time step of the phase field
equations (6.97) and (6.100) is very inefficient. One way to proceed is to solve for a pre-determined 2D
array one of whose dimensions represents small increments of φ between [0, 1] and the other of c between
[0, 1]. For each entry of the array, which represents a unique (φ, c) combination, Equation (6.107) is
iterated to yield the corresponding a unique (Cs(φ, c), CL(φ, c)) pair.

6.10 Properties of Dendritic Solidification in Binary Alloys

The first step in the process of casting metal alloys is the solidification of dendrites that nucleate, grow and
impinge on one another. The scale of these structures is largely controlled by inter-dendritic morphology
and interactions. Toward the centre of the cast, the temperature is nearly uniform and a many individual
dendrites form, a condition known as equiaxed dendrite growth. Near the mould wall, dendrites grow
cooperatively in a direction perpendicular to the chill surface, following the gradient that is is established
as heat is drawn out of the cast as it cools. Understanding this process of dendrite spacing selection has
been the topic of great industrial interest because of the link of microstructure to mechanical properties.

There have been many theories and models proposed to explain directional solidification in alloy.
Phase field modeling has also made its contribution to this field and, indeed, promises to be a very robust
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way to simulate the complexities of competitive dendritic growth which is beyond the scope of analytical
and so-called geometrical theories. This section reviews some of the theoretical work on directional
solidification,including more recent contributions to this topic made with phase field modeling.

6.10.1 Geometric models of directional solidification

A traditional paradigm for the study of casting microstructures is directional solidification. The typical
laboratory set up for directional solidification is studied using an apparatus analogous to that illustrated
in Fig. (6.10). In this process a sample is pulled at a constant velocity through a fixed temperature
gradient. The value of the temperature gradient (G), pulling speed (V ) and alloy composition (Co)

Figure 6.10: Experimental set for directional solidification or organic alloys. The alloy is placed between
two glass plates and solidified at a constant speed V through a constant thermal gradient G, where Tc < Th.

lead to a complex dependence of the dendritic spacing and morphology on the experimental parameters
[197, 23, 196, 124, 140, 31, 142, 141, 198]. Low pulling speeds lead to cellular arrays of dendrites. Increased
pulling speed leads to dendrite arrays with side-branching. At large enough speeds, absolute stability is
reached and a planar solidification front is attained. A typical situation where an initially flat interface
becomes unstable and destabilizes into an array of dendrites is shown in Fig. (6.11). A very large body of
work has been produced to elucidate the spacing selection in this process. Most experiments on organic
alloys reveal that the primary dendrtie spacing λ1 is reproducible as a function of [constant] pulling
speed V , or assuming this changes very slowly [197, 140]. The need to explain the selection process in
directional solidification has lead to a plethora of so-called geometric models that assume the existence
of a steady state dendrite array, and attempt to derive λ1 in terms of the geometry of the array and the
fundamental length scales of the solidification problem.

Theories of steady state primary spacing in directional solidification of alloy usually assume a power
law scaling of the form λ1 = KG−aV −b [196], where the exponents a and b are different in the cellular
and dendritic regimes and K is a constant of proportionality. The constants K, a and b typically vary
between theories. Assuming the dendrite tips can be described as spheres, Hunt [101] proposed a primary
spacing model of the form

λ1 = B

(
TmmL(k − 1)coσD

L

)1/4

G−
1
2V −

1
4 (6.108)
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Figure 6.11: Directional solidification of Succinonitrile-acetone. Adapted from [197].

where B = 2.8. Kurz and Fisher [132] used an elliptical approximation to describe dendrite tip and arrived
at the same equation, except B = 4.3. The derivation of Hunt’s geometrical model proceeds by assuming
that the dendrites are arranged geometrically in a hexagonal array, as shown in a 2D cross section in
Fig. (6.12). The minor axis of an ellipse is b and the major axis is a = ∆T/G, where ∆T ≡ TL−TE with
TL being the temperature at the dendrite tips, which is close to the liquidus temperature, and TE is the
temperature at the groove of the dendrites, typically close to the eutectic temperature for hypereutectic
alloys 10. The radius of curvature at the tip of an ellipse is R = b2/a and, by construction, λ1 = 2b,
which gives λ1 = 2

√
∆T R/G. At this point the theory heuristically relates R to the fastest growing

Figure 6.12: Elliptic dendrite array used to represent steady state dendrite array in geometrical models.

linearly unstable wavelength, the Mullins and Sekerka wavelength, determined by the maximum of the
linear dispersion analog of Eq. (5.68) for directional solidification [139]. This is given by λms =

√
lD do

11. Setting R = λms gives λ1 in the form of Eq. (6.108).

10This is an alloy whose average concentration lies above the saturation limit and below the eutectic concentration. For
example, the hypereutectic range in Fig. (6.2) is 18.3wt%Sn ≤ co ≤ 60wt%Sn.

11This approximation of the Mullins and Sekerka wavelength is accurate in he limit where the thermal length lT =
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More complex geometrical theories have also been formulated which consider such things as solute-
modified surface tension [125] or which give rise to a maximum in λ1 by considering growth regimes
separately [132, 124, 140]. Such geometrical theories are usually in qualitative agreement with experi-
ments over certain ranges of pulling velocity. However, K –or other tunable parameters– must be fit to
experimental data to obtain quantitative agreement [124, 140]. It is also noteworthy that even for slow
cooling rates, Eq. (6.108) does not describe the transient development of primary branches. To address
the transient scaling regime, heuristic formulae of the form λ1 ∼ (GR)−1/2 have been developed. As with
their steady state counterparts, they are found to work well in metal alloys only when phenomenological
parameters of the theory are fit to experimental data [31].

While geometrical models have provided important insight about spacing selection problem in solid-
ification, they have several deficiencies. First, their exponents are not unique over the entire regime of
V and G. Experiments show a crossover between different power law regimes as pulling speed is varied
[124, 140, 198]. A more serious concern is that geometrical models only work quantitatively by introduc-
ing ad-hoc adjustable constants, such as B in Eq. (6.108). Clearly, a self-consistent theory should be able
to determine λ1 with as few as possible fitting parameters. Another limitation of geometric models of
directional solidification is that their predictions do not actually correspond to realistic casting situations.
Experiments of solidified casts clearly show that the notion of a ”steady state” array is an abstraction
that does not exist. Experimental data would suggest that spacing selection should be measured and
reported using the notion of ”ensemble averages”, which captures their statistical nature, i.e. λ1 → 〈λ1〉.

6.10.2 Spacing selection theories of directional solidification

While experiments reveal that under steady-state conditions dendrite arrays can go to a particular,
reproducible, primary spacing as a function of a constant pulling velocity V , it is still not clear if or how
this spacing can be uniquely established under dynamical selection. Self-consistent analytical theories
[139, 207, 208] and specialized experiments aimed to test the stability of dendrite arrays [144, 141]
suggest that a particular primary spacing, λ1, of a dendrite array can be stable over a rage of pulling
speeds V . Alternatively, these theories and experiments imply that for a given pulling speed V there is a
range of stable primary spacings. This would suggest an initial dependence on λ1, reminiscent of highly
non-linear dynamical systems.

Warren and co-workers were the first to perform a linear stability analysis of a steady state array of
weakly interacting dendrites [207]. Their theory can only be applied to high pulling speeds where dendrite
tips interact weakly 12 and where each tip is assumed to evolve according to microscopic solvability theory.
They predicted that for a given initial λ1, there is a lower critical velocity below which λ1 period doubles
via cell elimination, whereby every other dendrite tip survives. Interestingly, a stability analysis of an
accelerating interface [208] suggested that λ1 will period-double to its final value before the dendrite
array reaches the corresponding steady state pulling speed. The predictions of Warren and Langer set
lower bounds for the spacing observed in traditional directional solidification experiments such as those
conducted by Trivedi and co-workers [197].

A series of experiments by Losert and co-workers supported the predictions of the Warren and Langer
theory [144, 141, 142, 143]. In one set of experiments [144] they first solidify an organic alloy sample
until a primary spacing, λo1 is achieved. They then begin to decrease the pulling speed V in steps,
observing that the dendrite array gradually increases its λ1. Below some critical velocity Vc the array

mLco(1− k)/k is much larger than the thermal diffusion length lD = 2DL/V .
12The theory assumes solute contributions from different dendrite tips are independent line sources.
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becomes unstable and λ period doubles to approximately λ1 ≈ 2λo1. The transition velocity is close to
the one predicted theoretically [207, 208]. The same group later tested the stability of the dendrite array
by using laser heating to modulate the amplitude of the dendrite tip envelope [141]. The decay of the
envelope amplitude back to the originally established λ0 followed the linear growth exponent predicted
by the Warren and Langer theory. Interestingly the spacing selected in all their dendrite arrays always
fluctuated within a range of values, not a well defined one. Figure (6.13) shows data reprinted from
Losert et. al [144], which shows how λ1 changes (bottom figure) as pulling velocity is decreased (top
figure) from its original value from which the initial steady state array was achieved. Other experiments

Figure 6.13: (a) Step-wise decrease in pulling speed of a directionally solidified SCN-C152 alloy. an initial
dedrite array is established at the speed corresponding to t = 0. (b) the corresponding change in the initial
dendrite array spacing λ1. Below a critical speed there is an approximate period doubling of the spacing.
Figure adapted from Ref. [144].

by Huang and co-workers similarly showed that after establishing a steady state dendrite array with λo1
at pulling speed Vo, the new λ′1 that emerges after changing the pulling speed from Vo → Vp depends on
the initial Vo.

Dynamical selection theories and associated experiments have been very successful in predicting how
an established dendrite array may change upon modification of the original pulling speed V . They have
not, however, addressed the questions of how the initial dendrite array is established from arbitrary initial
conditions such as that of a flat interface perturbed by thermal fluctuations, or a collection of nucleated
crystals near a mould wall. Moreover, it is not clear how the experiments of Losert et. al depend on the
rate of change of the pulling speed; as mentioned previously, experiments consistently appear to give rise
to reproducible values of λ1 vs V when V is held constant long enough under a given set of processing
conditions. Present theoretical and experimental work leaves open the possibility that under a given class
of fixed initial interface conditions and processing conditions, there can be a reproducible set of spacings
versus pulling speeds. However, it seems likely that the selection function λ = f(V,G) will be dependent
on initial conditions and the particular solidification process.
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6.10.3 Phase field simulations of directional solidification

In recent years, phase field modeling of solidification has emerged as perhaps the most robust way to
simulate the complex morphologies and inter-dendritic interactions ”virtually”, thus avoiding the various
challenges that enter analytical theories. Moreover, in the case of a dilute alloy, it is possible to use
equations such as Eqs.(6.63)-(6.65) to model dendritic growth quantitatively [59]. Figure (6.14) shows a

Figure 6.14: Directional solidification of Succinonitrile-4wt%acetone. Pulling speed is V = 4µm/s and
G = 5K/mm. Warm/cold colors represent high/low concentration, respectively.

phase field simulation of a directionally solidified dendrite array in SCN-ACE. As in Fig. (6.11), there is a
clear competition between primary branches that causes the familiar branch elimination, which ultimately
leads to a dynamic change of λ1 far away from the initial spacing predicted by the Mullins and Sekerka
linear instability theory.

Phase field simulations such as the one shown in Fig. (6.14) have become quantitatively comparable
to experiments owing almost entirely to two innovations. The first is the development of thin interface
relations such as the ones discussed earlier in this chapter. Another crucial innovation is the efficient use of
adaptive mesh refinement (AMR). As discussed in section (5.7.3), AMR is a computational methodology
that makes it possible for numerical meshing to track only those parts of the system where a phase
transformation occurs. Figure (6.15) illustrates these ideas by showing how the grid the simulation of
Fig. (6.14) adapts itself around the solid-liquid interfaces. The ability to perform calculations only near
the interface reduces the dimensionality of the domain, making it possible to simulate such problems as
dendrite growth, precipitate growth and directional solidification type problems on very large domains
and on much smaler real time scales.

Recently Greenwood and co-workers conducted phase field simulations to analyze the spacing selection
problem using power spectrum analysis of the solidification front [88]. The primary branch spacing λ1 is

identified by using mean of the power spectrum P (k) = ĥ(k)ĥ†(k), where ĥ(k) is the Fourier transform
of the interface profile h(z), defined as the distance to the interface along the x-axis from some origin
and the z coordinate is transverse to the growth direction. The 1D wavevector k = 2π/λ is a measure of
the inverse length scale λ. The profile h(z) is made monotonic by following the contours of the dendritic
envelopes. The power spectrum P (k) can be used to construct the inverse wavelength probability density.
This density can be used to analyze the statistical character of the spacing selection problem. The
distribution P (k) contains information about the importance of all length scales influencing the dendrite
array. Figure (6.16) shows the time evolution of a typical dendritic array and its corresponding power
spectrum. The dendrite array in the figure has not yet reached a true steady state, nor is it clear if such
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Figure 6.15: Time sequence of the adaptive mesh corresponding to the boxed region in Fig. (6.14). Time
sequences shown are different from those in Fig. (6.14).

an ideal state will ever be reached. However, there is an apparent or characteristic spacing evident in the
array, which corresponds to the primary peak in the power spectrum. Greenwood and co-workers plotted
kmean versus 1/t and extrapolated the data to infinite time, to estimte the average array spacing 〈λ1〉.
They also noted that the main peak develops very rapidly, before approach to a steady state becomes
apparent in the array.

The work of Ref. [88] conducted simulations like the ones shown in Fig. (6.16) for several sets of phase-
field parameters (G, V , Co, k, λ) [88]. Here, λ is the coupling coefficient in Eq. (6.75), and Co is the alloy
composition. Their simulations found cellular structures emerge at small V , while at high V dendritic
arrays emerge. The spacing 〈λ1〉 attains a maximum for intermediate values of V , near where the thermal
length approaches the solute diffusion length, i.e. lT ≈ lD. The presence of such a maximum has been
been predicted theoretically [132] and observed in experiments [23, 140]. Figure (6.17) shows simulated
〈λ1〉 data collapsed onto a plot of dimensionless wavelength vs. a dimensionless velocity. On the same
plot are superimposed three experimental data sets from Ref.[140], in which directional solidification of
organic alloys of SCN and PVA were studied. The three experiments in Fig. (6.17) are for SCN-0.25mol %
Salol at 13K/mm, SCN-0.13mol %ACE at G=13K/mm and PVA-0.13mol % Ethanol at G=18.5K/mm.
The change in the two slopes corresponds to where V in the raw data reaches a maximum.

Dantzig and co-workers extended phase field simulations to the study of microstructure selection in
directional solidification in three dimensions [110, 109, 14, 15]. Their simulations studied directional
solidification of an SCN-Salol alloy in the thermal gradient G = 4K/mm and with a thermal length
lT = 4.9 × 10−4m. As in the two dimensional simulations of Ref. [88], the the 3D simulations were
started from an initially flat interface perturbed by uniformly random fluctuations. Figure (6.18) shows
the emergence of cellular arrays arising for pulling speeds and for different glass plate spacings δ (units of
interface width Wφ). As the thickness of the channel, δ becomes smaller, the scaling of the 3D dendrites
approaches the narrow curve (or band) of the 2D dendrites, as expected. Specifically, after a sufficient
transient time, they analyzed their data using a Fourier technique as described in the 2D simulations.
For the smallest values of δ, they found that through a suitable re-scaling, the computed 〈λ1〉 vs. V data
collapsed onto the curve shown in Fig. (6.17).

The simulations of Greenwood et. al and Dantzig and co-workers suggests that 〈λ1〉 can be described
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Figure 6.16: (Left) Solid-liquid interface of a dendritic array at different times. Pulling speed of Vs =
150µm/s and thermal gradient is G = 1500K/mm. (Right) power spectrum of corresponding interfaces
at left. Units of length are all in the phase-field interface width Wo.

by a crossover scaling function of the form

〈λ1〉
λc

=
lT
lD
f

(
lT
lD
− lT
l∗D

)
(6.109)

where λc is a characteristic wavelength at the transition from the planar-to-cellular instability and l∗D ≡
2D/Vc and Vc is the pulling speed where a planar form becomes unstable to cellular solidification. The
characteristic wavelength λc has been evaluated numerically and found to be consistent with several
theoretical predictions in the literature. Figure (6.19) compares λc for the 2D data of Fig. (6.17) to
λtheory ≡

√
λmslTR(Vp = Vc), where λms denotes the Mullins-Sekerka wavelength at the planar-to-cellular

onset boundary (i.e., where V = Vc), and lTR(Vp) is a velocity-dependent generalization of lT , implicitly

determined from lTR = lT (1 − exp(
−lTRVp

D )). Physically, lTR(Vp) is proportional to the amplitude of
cellular fingers and satisfies lTR ≈ lT (1 − l∗D/2lT ) at the onset of cellular growth, while in the limit
(Vp � Vc), lTR → lT . This form of λtheory is similar to an analytical prediction of λc from a geometrical

model [132]. Figure (6.19) also compares λc to λtheory = (dolDlT )
1
3 , which represents the geometric mean

of the three length scales, empirically suggested to be proportional to the wavelength at the planar-to-
cellular onset [196]. Figure (6.19) suggests that for both cases λc = αλtheory(1 + βdo/λtheory), where α
and β are material independent constants.

Boettinger and Warren also examined directional solidification in an isomorphous alloy [29] using a
phase field model they previously developed [204, 28], which employed a frozen, linear thermal field and
a free energy of the form discussed in section (6.3.3). Using parameters approximately corresponding
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Figure 6.17: Dendrite spacings from computations and experiments from Ref. [140] scaled to material
properties, producing a single scaling function for primary spacings λ1

to Ni-Cu they also found evidence of a monotonic relationship between a band of dendrite spacing λ1

and pulling velocity. It is not clear if their simulations can be quantitatively compared to the ones of
Greenwood et. al and Dantzig et. al. The former investigators used quite a small simulation domain,
making their results amenable to strong finite size effects. Also they also did not apply asymptotic
analysis discussed in this chapter to their phase field model in order to emulate the interface equilibrium
conditions specified in section (6.2.2; indeed the work of Boettinger et. al is aimed at investigating the
role of solute trapping on the interface stability. Interestingly, the work of Boettinger et. al also shows
that the different realizations of uniformly random perturbations of an initially flat initial interface gives
rise to spread in the final λ1 for a given V . This is consistent with some statistical selection mechanism.
It is plausible that the larger systems used by Greenwood et. al minimized the spread in λ1 or at least
confine it to a scaling band, consistent with Fi.g (6.17). Further work is required to answer this question
but it appears that at least some combination of statistical selection and scaling may be at work in
selecting the characteristic length of primary branches.

The combination of phase field modelling, analytical theories and experiments of directional solidifi-
cation raise some interesting questions. On the one hand, it appears that the primary spacing displays,
at least in the statistical sense, a scaling theory for a given class of initial conditions and the case of
constant pulling speeds and thermal gradients. On the other hand, it also appears that a deterministic
steady state of a dendritic array does not exists and the array may evolve in an ensemble of states that
depends on initial and cooling conditions. Is there a way to reconcile these apparently contradictory
conclusions? The answer may lie in what is meant by ”dendrite spacing”. It is clear from experiments
that dendritic spacing does fall into at least a range of reproducible values, for slowly varying cooling
conditions. In this case, the average spacing 〈λ1〉 is characterized statistically such as in Fig. (6.16). It
is therefore plausible that the instantaneous value of λ1 is influenced by finer oscillations of the tip [60],
breathing modes, etc., can comprise finer structure to a larger scale selection principle characterized by
〈λ1〉, and which is determinable by the fundamental length scales of the solidification problem. That
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Figure 6.18: Directional solidification of an SCN-Salol alloy in 3D. As the spacing between the glass plates
becomes smaller then the tip radius the simulations effectively becomes two dimensional. Adapted from
Ref. [15]

would also explain why the phenomenological power-law theories of Hunt, Kurz, Kirkaldy and others are
robust enough have the same trend as experiments. From the perspective of materials engineering, a
coarse approximation such as that given by geometric models or scaling theories like that of Greenwood
et. al are probably more than adequate. However, from the perspective of understanding the precise
morphology during solidification, more research is required to elucidate the dynamics controlling dendrite
array selection.

6.10.4 Role of Surface Tension Anisotropy

It was previously discussed that an isolated crystal requires anisotropy in surface tension or interface
kinetics in order to select dendritic growth directions. In the absence of any anisotropy, a solidifying
crystal will meander, forming a ”seaweed” like patterns formed through successive tip splitting of the
primary branches as they grow. Seaweed are also possible in directional solidification [9, 198, 103] where
they can emerge when the temperature gradient is mis-oriented with respect to preferred growth direction
corresponding to the minimum in surface tension. The resulting competition between the driving force
provided by the thermal gradient and the lower free energy along the axis of surface tension anisotropy
can cause the dendrite growth tip to undergo a succession of tip splittings (a key feature of seaweed
evolution) as it attempts to follow two growth directions. Figgure (6.20) shows a 2D phase field simulation
of seaweed. In the figure the anisotropy of the surface tension is oriented at 45 degrees from the x axis,
while the direction of heat extraction along the negative y axis.
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Figure 6.19: Plot of λc/do versus two previously published theoretical prediction of the same quantity.

Figure 6.20: Phase field simulation of a typical seaweed structure emerging when two sources of anisotropy
compete.

Reference [175] used phase field modeling to examine the morphological transition in two dimensional
directional solidification. it was found that a mis-orientation between the direction of a thermal gradient,
G, and the direction of minimum surface tension leads to a transition in dendrite microstructures [175].
Figure (6.21) shows a phase field simulation of a dendritic array where the surface tension is minimal
at directions 45o from the z-axis (horixontal) and where the thermal gradient is one dimensional along
the z-axis. The thermal gradient in this simulation is set low enough that the surface tension anisotropy
controls the minimization of free energy. This results in dendritic crystal array oriented in the direction of
the surface tension anisotropy (45o with respect to the z-axis). In Fig. (6.22), the thermal gradient (i.e.,
driving force along z-direction) is increased and a competition sets in between the preferential direction of
surface tension anisotropy and the cooling direction. The ensuing competition leads to the characteristic
seaweed-like structures seen in the figure, structures characterized by a continuous succession of growth
and splitting of a rather bulbous primary and –to a lesser extent– secondary tips.

One way to characterize the morphological change from 2D dendrites to 2D seaweed is the distribution
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Figure 6.21: Directional solidification with the surface tension anisotropy oriented at 45o with respect to
the z-axis. G = 0.8k/mm and Vp = 32µm/s. Below a critical thermal gradient (oriented along the z-axis)
the surface tension anisotropy controls the growth and dendritic structures emerge, oriented very closely
to the 45o axis. The insets show the velocity distribution in the x and z directions, respectively.

of local interface velocities. This is shown in the insets of Figs. (6.21) and (6.22). It is typical for seaweed
structures to exhibit a sharp velocity distribution, while a broadening of the distribution is typical as
dendrites emerge. Another way to quantify the transition exemplified in Figs. (6.21) and (6.22) is by a
semi-analytical argument presented in [175]. For the parameters used to generate the data shown here,
this analysis predicts that for a given ε4, a morphological change from seaweed to oriented dendrites will
occur when the cooling gradient G is below

G∗ ≈ Pf
√

(Vpcosθ)/(Ddo [1 + 15ε4cos4θ]) (6.110)

where Pf ≈ 0.004, Vp is the pulling speed, θ is the angle of anisotropy, D is the diffusion constant, do
is the capillary length and ε4 is the anisotropy strength. This selection criterion defines a morphological
phase diagram in Vp−G space for a fixed ε4. It predicts a crossover from seaweed to oriented dendrites as
a function of Vp. At sufficiently large Vp it is expected the fastest growing unstable wavelength to occur
in the forward direction regardless of the angle of anisotropy. It is quite plausible that the phenomenon
described here is ubiquitous and presents itself in other forms when two or more anisotropies controlling
growth directions are present.

The transition between competing dendritic growth directions becomes significantly more complex in
three dimensions. For example, molecular dynamics has shown [96] that a correct characterization of
the surface energy of a 3D crystal requires the angles θ and Φ of the spherical coordinate system to be
parameterized. Specifically, the stiffness γ of a crystal is given by

γ(θ,Φ) = γo (1 + ε1K1(θ,Φ) + ε2K2(θ,Φ)) (6.111)

where γo is the isotropic surface tension and K1 and K2 are cubic harmonics, which are simply combi-
nations of spherical harmonics [96]. The parameters ε1, ε2 are the 3D analogues of ε4 used in 2D. They
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Figure 6.22: Directional solidification with the surface tension anisotropy oriented at 45o with respect
to the z-axis. Cooling parameters are the same is in Fig. 6.21. As the thermal gradient increases a
competition between growth in the forward direction and the direction of surface tension anisotropy leads
to multiple dendritic tip splittings, and a subsequent crystal structure that resembles seaweed. The insets
show the velocity distribution in the x and z directions, respectively

can be used to define preferential growth along multiple directions depending on their relative strength.
For example, in FCC metals ε2 < 0 and ε1 > 0. A positive term K1 favours growth in the 〈100〉, while
a negative K2 term favors growth in the 〈110〉 direction. The direction that is eventually selected will
clearly depend on the relative strength of these two terms. A recent phase field study Haximali and co-
workers [90] showed that competition between ε1 and ε2 will cause a transition between equiaxed 〈110〉
oriented dendrites to seaweed and back to equiaxed 〈100〉 dendrites. Figure (6.23) shows an example
of the emergent dendrite morphologies of a pure material when ε2 is held fixed and ε1 is varied [90].
Haximali and co-workers also considered the combined effect of ε1 and ε2, predicting a phase diagram
containing a region of 〈110〉 dendrites, a region of 〈100〉 dendrites and a region of seaweed structures.

The study of Haximali and co-workers also considered the role of the the anisotropy parameters ε1
and ε2 in binary alloys. Interestingly, they conjectured that increasing the nominal alloy composition
in a binary alloy (e.g. wt%Zn in Al) will result in a simultaneous change in both the anisotropies,.
This hypothesis was found to be consistent with molecular dynamics work of Hoyt and co-workers [96].
The implication of their finding is that changing the impurity content of an alloy will led to different
dendritic morphologes. Specifically they estimated that the change in anisotropy parameters would make
the corresponding dendritic morphology transition from a 〈100〉 equiaxed structure to seaweed. Evidence
of this transition was found in experiments in directionally solidified of Al-Zn alloys.
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Figure 6.23: Figures (a)-(e) show dendritic growth forms versus ε1 for ε2 = −0.02. The azimuthal mis-
orienatation between branches changes continuously Φ = 0 to Φ = 45o. The top right figure shows the
interface cross sections at equal time intervals along a 〈100〉 plane of sub-image (b). Projected contours of
mis-orientation between growth directions, quantified by the azimuthal angle Φ. Reproduced from Ref. [90].
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Chapter 7

Multiple Phase Fields and Order
Parameters

In recent years, the basic principles of phase field theory have been used to develop a large number of so-
called multi-phase or multi-order parameter phase field models, which have been applied to the study of
poly-crystal, multi-phase or multi-component phenomena in phase transformations. Generally speaking
these models fall in three classes. Models incorporating multiple order parameters go back to the work
of Khachaturyan and co-workers [50, 51]. The introduction of orientational order parameters to examine
poly-crystalline solidification goes back to the work of Kobayashi and Warren [128, 129]. The introduction
of multiple, phase fields, which are interpreted as volume fractions, has been championed by Steinback
and co-workers [193, 105, 30]. Since the inception of these models many other works that have used or
expanded on the ideas developed in the above references. The reader is referred to the following small,
but by no means exhaustive, list of such works: [5, 201, 202, 205, 192, 77, 127, 160, 117, 44, 161, 185, 83,
86, 85, 2, 221, 211, 122, 78, 19, 156, 119, 126]. The majority of multi-order parameter or multi-phase field
models have found applications in solid state grain growth and coarsening and more recently in multi-
phase precipitation. Some models also incorporate elastic effects in order to study the role of strain in
phase transformations. Others, particularly ones that employ an orientational order parameter, have been
used predominately to examine dendritic solidification and the subsequent formation of polycrystalline
network.

As with single phase field theories, multi-order and multi-phase field models are typically constructed
so as to respect the thermodynamic symmetries of bulk phases and to consistently reproduce the correct
sharp interface kinetics in the limit when phase field interfaces become mathematically sharp. These
models are not immune from the diffuse-interface problems discussed previously. A thin interface limit
analogous to that discussed in conjunction with single order parameter theories is generally lacking for
such models [77, 58]. This does not pose a big problem in solid state problems where the disparity
in diffusion coefficients is small and the kinetics is largely curvature or diffusion controlled. It can
be a problem, however, when using multiple phase fields to simulate the entire solidification path of
multiple phases or crystals. The same general comments can be made about orientational order parameter
models –or multi-order parameter models in general. There are several notable exception to these general
observations. One is is the multi-phase field work of Folch and Plapp [76]. They have used three
volume fraction fields to simulate eutectic solidification in binary alloys using diffuse interfaces. They
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employ a free energy functional that reduces along any two-phase boundaries into the thin-interface
model of Echebarria and co-workers [59]. More recently, Kim [121, 119] also extended the use of the
anti-trapping formalism discussed in the last chapter to a single phase solidification model with multiple
concentration fields. This technique was recently used by Steinbach [190] to associate an antri-trapping
for each concentration field of a multi-phase field model.

Delving into the technical details of multi-phase field and multi order parameter models is beyond the
scope of an introductory text. In order, therefore, to keep the length of this book manageable, this chapter
will only introduce the basic aspects of such models. The reader is directed to the various works cited in
this section –and references therein– for a more complete analysis on this subject and its applications.

7.1 Multi-Order Parameter Models

The original concept of multiple solid order parameters was already discussed in section (5.1), where a
separate order parameter was associated with each reciprocal lattice vector of a crystal. In that context,
each order parameter was complex and could be used to reconstruct atomic-scale structure in a crystal, as
will be discussed in later chapters. In a slightly different context, Khachaturyan and co-workers introduced
multiple real order parameters, φi, to distinguish between different ordered structures (e.g. as occurs in
solid state transformations). In this case, a phenomenological free energy functional is constructed to
respect the appropriate symmetries in each order parameter and, in the case of alloy, the appropriate
thermodynamics in each phase. Dynamics for each φi follow the usual minimization principle examined
in the context of single order parameter theories. Dynamics of compositions and temperature follow the
standard conservation laws.

7.1.1 Pure materials

The simplest multi-order free energy that can represents transformations that involve the reduction of
symmetry between a parent phase and different ordered daughter phases has the form [52, 49, 117]

F
[
{φi}

]
=

∫
dV

[ N∑
i=1

ε2φi
2
|~∇φi|2 + f

(
φ1, φ2, φ3, · · · , φN

)]
(7.1)

where the fields {φi} ≡ φ1, φ2, φ3, · · · , φN describe each order phase f
(
φ1, φ2, φ3, · · · , φN

)
≡ f ({φi})

denotes the local or ”bulk” part of the free energy. A simple form of f({φi}) that is the analogue of the
”double-well” potential is given by

f
(
{φi}

)
=

N∑
i=1

(
− A

2
φ2
i +

B

4
φ4
i

)
+ αobs

N∑
i=1

N∑
j 6=i

φ2
iφ

2
j (7.2)

The first term in Eq. (7.1) gives rise to gradient energy and therefore grain boundary energy of a phase,
proportional to the coefficient εφi . The second term represents a multi-well potential having 2N minima,
making it possible to theoretically consider a large number of crystals for single phase systems (or several
phases). In this case where A = B = 1, the multi-well has minima at φi = ±1 and φj = 0 ∀j 6= i.
Other forms of the free energy can be constructed that give minima at φi = 0, 1. The constants A
and B can also depend on temperature, as do in that case the minima of the multi-well potential. The
last term containing αobs called obstacle potential. This is an interaction energy that penalizes fields for
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Figure 7.1: Multi-Phase field free energy functional, neglecting gradient term and with αobs = 1.

overlapping, in proportion to the barrier αobs. Figure (7.1) plots the field free energy functional for the
case of N = 2 and neglecting the gradient term. The free energy in Eq. (7.1) has been used to study
simple properties of grain growth and coarsening. A slight variation of this form can be used for two
solidifying crystals where each order parameter varies from φi = −1 in the liquid to φi = 1 in the solid.
In this case the free energy in Eq. (7.2) is modified such that each term in the interaction term is replaced
by
∑
i

∑
j 6=i(φi + 1)2(φj + 1)2, and a temperature dependent term that breaks the symmetry of the free

energy must be included to handle solidification. The form of the symmetric part of the free energy in
this case is shown in Figure (7.2)

By extending the free energy to a sixth order polynomial it is possible to generate a free energy
landscape that allows transitions to meta-stable states. Khachaturyan and co-workeres [203] introduced
such a sixth order free energy of the form

f(φ1, φ2, φ3) =

3∑
i=1

(
− A

2
φ2
i +

B

4
φ4
i

)
+
C

6

(
φ2

1 + φ2
2 + φ2

3

)3

+ αobs

N∑
i=1

N∑
j 6=i

φ2
iφ

2
j (7.3)

to study the transition from a cubic phase to a meta-stable martensitic phase. In this case a cubic disor-
dered phase gives rise to one of three variants of daughter phases with tetragonal symmetry, where each
cubic phase can take on two orientations. A very important realization of this transformation occurs
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Figure 7.2: Multi-Phase field free energy functional for two solidifying grains. αobs = 1.

when austenite is converted to martensite steel. This transformation is induced by rapidly quenching
austenitic steel (cubic symmetry), which leads to a metastable martensite phase having tetragonal sym-
metry. Martensite is a very hard brittle phase, while austenite is more soft and ductile. Forming a certain
fraction of martensite in austenite is a common way to harden steels.

Dynamics of multiple order parameters proceeds analogously to the case of single order parameters
theories. Each φi evolves according to dissipative dynamics that dynamically minimize F [{φi}] according
to

∂φi
∂t

= −Γφi
δF

δφi
+ ηi(~x, t)

= −Γφi

[
∂f({φi})
∂φi

− ε2φi∇
2φi

]
+ ηi(~x, t), (7.4)

The noise term ηi can in principle be different for each order parameter, although it is typically drawn
from a Gaussian distribution with zero mean and variance consistent with the fluctuation dissipation
theorem [46].

7.1.2 Alloys

Structural transformations typically occur in alloys, which involve the precipitation one or more ordered
phase from a disordered phase and mass transport. An interesting metallurgical example is the γ′ → γ
transition in AN-Al alloys, there the γ′ phase can assume one of four crystal symmetries (i.e. i = 1, 2, 3, 4)
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[221]. To include impurity effects, the coefficients in the free energy density of the previous sub-section
must be made to depend on the concentration c, which is the weight or mole percent of impurities in the
solvent element of the alloy.

Wheeler et al [209] and later Fan and Chen [74] extended multi-order parameter approach to study
grain growth in two-phase solids of a binary alloy. These were then extended by Fan et al. [75] to study
Ostwald ripening in a poly-phase field model of a binary alloy. The basic form the free energy functional
has the form

F
[
{φi}, c

]
=

∫
dV

[ N∑
i=1

ε2φi
2
|~∇φi|2 +

ε2c
2
|~∇c|2 + f ({φi}, c)

]
, (7.5)

For a general bulk free energy f({φi}, c), this model will be plagued by similar mathematical difficulties
as its 1D analogue studied in section (6.4). Finding the equilibrium order parameters, φeq

i , requires
multi-variable minimization in this case, which can be quite complex. Moreover, the φeq

i are concen-
tration dependent. Furthermore, the surface energy will depend on the properties of the steady state
concentration and order parameter profiles. While straightforward to calculate, these properties become
very tedious for multi-order parameter models. In addition, there will also be an upper bound on the
gradient energy coefficient(s) that can be used while self-consistently representing a particular surface
energy.

To overcome these problems Chen and co-workers [222, 223] have extended the method of Kim and
co-workers studied in section (6.9) to multiple order parameters 1. For the case of chemically identical
precipitates of N different crystal symmetries, two fictitious concentration fields are defined, one for a
precipitate phase, Cp, and another for the matrix phase, Cm. The physical concentration, c is then
interpolated by

c = Cpp
(
{φi}

)
+ Cm

(
1− p

(
{φi}

))
. (7.6)

where

p
(
{φi}

)
=

N∑
i

P (φi) (7.7)

and h(φi) is any convenient interpolation function that restricts each order parameter between (0 ≤ φi ≤
1). A simple form used in Ref. [221] is

P
(
{φi}

)
=

N∑
i

φ3
i (6φ

2
i − 15φi + 10) (7.8)

In addition to Eq. (7.6), the fictitious concentrations Cm and Cp are restricted to satisfy a constant
chemical potential at all points by imposing the condition

∂fp(Cp)

∂c
=
∂fm(Cm)

∂c
(7.9)

where fp and fm are the free energies of the precipitate and matrix phases, respectively. Together,
Eqs. (7.6) and (7.9) imply that for any combination of {φi} and c in the system, there is a unique Cp field
and Cm field. Physically this implies that any diffuse interface is a mixture of matrix and precipitate

1This approach was also developed at the same period of time in the context of multi-phase field models by Taiden et.
al [105].
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phases with a constant chemical potential. Equations. (7.6) and (7.9) can be self-conssitently solved
numerically using the method of Eq. (6.107) where h(φ)→ p

{
φi}
)
.

In terms of Cm and Cp, the free energy density f({φi}, c) is then written as [121, 222, 223],

f({φi}, c) = p
(
{φi}

)
fp(Cp, T ) +

(
1− p

(
{φi}

))
fm(Cm, T ) +HfD

(
{φi}

)
(7.10)

where H is the height of the double well, i.e. nucleation barrier and fD(φi)) is a multi-well potential
given by

fD

(
{φi}

)
=

N∑
i=1

φ2
i (1− φi)2 + αobs

N∑
i=1

N∑
j 6=i

φ2
iφ

2
j (7.11)

It is noted that fp and fm can be directly chosen from thermodynamic databases, leading to a quantitative
evaluation of driving forces. The first term in Eq. (7.11) sets the nucleation barrier for each variant and
the ”obstacle” term αobs models an interaction penalty for the overlap of any two or more interfaces.

The evolution equations for φi, once again, follow

∂φi
∂t

= −Γφi
δF

δφi
+ ηi(~x, t)

= −Γφi

[
∂f
(
{φi}, c

)
∂φi

− ε2φi∇
2φi

]
+ ηi(~x, t), (7.12)

while the impurity concentration evolves according to mass conservation,

∂c

∂t
= ~∇ ·

[
Γc(φ, c)~∇

δF

δc

]
= ~∇ ·

[
D
(
{φi}

)
∂,ccf

(
{φi}, c

) ~∇(∂f({φi}, c)
∂c

− ε2c∇2c

)]
(7.13)

where D
(
{φi}

)
is the phase dependent diffusion coefficient. A typical choice often used in the literature is

D
(
{φi}

)
= Dpp

(
{φi}

)
+Dm

(
1− p

(
{φi}

))
. This choice is phenomenological through the interface region

because of the arbitrariness of the choice of p
(
{φi}

)
. It is possible, however, to replace this function by a

new one, say H
(
{φi}

)
, with the same bulk phase limits and different interface properties that match some

desired measurements. The partial derivatives on the right hand sides of Eqs. (7.12) and (7.13) can be
cast in terms of Cm and Cp using Eqs. (6.93)-(6.95), where φ→ φi, h(φ)→ p

{
φi}
)

and h′(φ)→ P ′(φi).
The multi-order parameter formulation discussed here can be analyzed similarly to the model of

section (6.9) to obtain the equilibrium properties of the model. Specifically, because of the method
chosen to interpolate concentration, the chemical potential becomes constant through the interface, thus
removing any explicit dependence of concentration from the surface energy calculation. The resulting
phase field steady state equation (i..e Euler-Lagrange equation) for φi describing the transition across
an equilibrium matrix-precipitate boundary becomes the familiar form leading to a hyperbolic tangent
solution. The resulting expression for surface tension and interface width are determined as in Ref. [121],

σ =
εφ
√
H

3
√

2

W =

√
2εφ√
H

(7.14)
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Where the specific factor of
√

2 depends on the definition used to define the interface width (i.e. where
the φ is sufficiently close to 0 or 1). For overlapping interfaces, these constants have a more complex
dependence on the order parameters. As discussed earlier, the diffuse or thin interface limit of this and
most multi-order parameter formulations is presently lacking. This is likely not to be a problem for
many solid state transformations, where the difference in diffusion coefficients can be small (in some
cases) and which are curvature or diffusion controlled. Of course, care must always be taken how diffuse
the interface is made so that particle interactions are not induced artificially. Furthermore, the diffuse
interface is expected to generate spurious terms of the form discussed in the connection with solidification
modelling in previous sections (e.g. ∆F , ∆H and ∆J).

7.1.3 Strain effects on precipitation

A common application of multi-phase field models is the study of second phase particle precipitation
from a solid matrix. This phase transformation is usually strongly influenced by the effect of elastic
strains that are generated by the mis-fitting of atoms of different crystal structures across their common
boundary. For instance in the γ′ → γ transition discussed above the tetragonal and cubic phases can
generate a lattice mis-match of order 10−2. To include this and related elastic effects an additional free
energy contribution, fel(φ) is added to Eq. (7.10). This leads to a elastic component to the free energy
functional,

Fel[φ, c] =
1

2

∫
V

[(
εij − εoij ({φi}, c)

)
Cijkl({φi})

(
εij − εoij ({φi}, c)

)]
dV (7.15)

where subscripts denote tensor components and repeated indices imply summation 2. The tensor Cijkl
is the elastic modulus tensor, which generally depends on phase via the order parameters φi, as well as
possibly on concentration c. The tensor εij is the local heterogeneous strain, defined by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(7.16)

where ui is the ith component of the displacement ~u and xi is the ith cartesian coordinate (i = 1, 2, 3)..
The tensor εoij is a so-called eigenstrain or stress-free strain. This is a strain the material assumes in
order to relieve itself of internal stresses. It serves as a reference state or strain. It generally depends
on the local composition, order (i.e. phase) and temperature. Eigenstrain is illustrated intuitively by
considering the free expansion of a bar heated through a a temperature difference ∆T . The strain on the
bar is εo = ∆L/Lo = α∆T , where Lo is the original length of the bar. Any additional strain –internal or
external– applied to the bar must be referenced with respect to εo 3.

An important source of stress-free strain in alloys arise because the difference in size of a solute atom
from its host locally distorts the host lattice. The form of stress-free strains from this mechanism is
known as Vagard’s law [72], and takes the form

εoij ≡ ε
vag
ij ≡

1

a

da

dc
δij (7.17)

where a is the lattice parameter of a given phase Analogously, crystal structures of different lattice
constants that meet at an interface locally distort (near the interface) in order to accommodate as much

2It is assumed here that there is no macroscopic change in volume of the materials during the phase transformation.
3Note that if there is a homogeneous strain εhij in the material, the eigenstrain must then be subtracted from this, i.e.

εoij → εoij − ε
h
ij .
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bonding, or partial binding, as they can. The local distortion on either side of the interface causes a
elastic distortion throughout the two phases. The stress-free strain associated with misfitting latices is
modeled by a an additional contribution to εoij of the form

εoij ≡ εmis
ij ≡

N∑
n=1

εnijφ
2
n (7.18)

whereN is the number of crystal phases or variants that minimize the bulk free energy below the transition
temperature. Here, the coupling of each term to φn makes each term in the sum ”activate” only in the
ordered precipitate phase. Thus, misfit is measured relative to the cubic matrix phase. For each variant
phase the eignenstrain is a diagonal tensor. For instance, in the cubic to tetragonal transformation
example discussed above, εnij = εni δij , where the components of the misfit strain are: ε1i = (ε3, ε1, ε1),

ε2i = (ε1, ε3, ε1) and ε3j = (ε1, ε1, ε3), where ε1 = (a1 − a2)/(a2φ
2
eq) and ε3 = (a3 − a2)/(a2φ

2
eq), where

a1, a2, a3 are the lattice parameters of the cubic unit cell. Since the lattice constant depends on local
composition, the misfit strains can also, strictly, have a concentration dependence [186].

Incorporating the change of order parameters of the strain energy requires an additional ∂fel

(
{φi}

)
/∂φi

term in the large square bracket on the right hand side of the phase field equation (7.12). Moreover,
strain relaxation is simulated alongside the dynamical phase field equations, Eq. (7.12) and (7.13) by
solving the continuum equations of mechanical equilibrium. This is modeled by

∂σij
∂xj

=
∂

∂xj

(
δFel

δεij

)
=

∂

∂xj

(
∂fel

∂εij

)
(7.19)

where σij is the stress tensor. The explicit forms of ∂fel/∂φi and ∂fel/∂εij are worked out explicitly for
the γ → γ′ transformation in [216] (see Eqs.(26) and (28), respectively). Use of the static -equilibrium
equations implicitly assumes that strains are relaxed on much shorter time sales than any other process as-
sociated with the phase transformation in question. This assumption becomes invalid for transformations
that occur on phonon time scales.

Figure (7.3) shows evolution of γ′ precipitates in a Ni-Al alloy. This simulation was done by Zhu and
co-workers [221] using a multi-phase field model with elastic misfit strain similar to the one described in
this section. The initial precipitates are typically seeded by nucleating many random precipitate seeds,
whose distribution is motivated by experiments [187]. As coarsening proceeds, precipitates take on a
conspicuous cuboidal form. The first frame in the image shows the precipitate particles immediately
following nucleation of initial seed particles. Subsequent frames show the coarsening process, wherein
particle merger reduces the number of particle. The typical particle size was mathematically characterized
by L3(t) = L3

o+K(t− to), where L is the average liner dimension of the particles while Lo is the particles
size at the onset of coarsening, which corresponds to the time tc. Figure (7.4) compares this theoretical
form to experiments.

7.1.4 Anisotropy

As with single order parameter theories, anisotropy of surface energy is modeled through the angular
dependence on the gradient energy and the mobility coefficients. For instance, Kazaryan and co-workers
[116, 117] modulate the angular dependence of surface energy anisotropy of each grain via the gradient
energy coefficient εφi and the mobility Γφi . Specifically, they set εφi = E2

oA(θ, ψ)2 and Γφi = ΓoA(θ, ψ)
where

A(θ, ψ) = (| cosψ|+ | sinψ|) θ
[
1− ln

θ

θm

]
(7.20)
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Figure 7.3: Multi-phase field simulation of the evolution of γ′ precipitates in a Ni-13.8at%Al alloy.
Reprinted from Ref. [221].

and θ and ψ are the two angles required to measure a tilt boundary mis-orientaiton, and Eo and Γo
are isotropic reference values of surface energy and mobility, respectively. It is found that anisotropic
mobility leads to a modification of the usual Allen-Chan relationship [41] which related growth of grain
boundary area in a polycryatlline sample according to

A(t)−A(t = 0) = −kMt, (7.21)

where k is a constant and M is related to the interface mobility, corrected for anisotropy [116].
Another source of inherent anisotropy occurs in particles precipitation when strain relaxation is consid-

ered. In this case the source of the anisotropy is the different growth rates along different crystallographic
directions caused by misfit strains. Yeon and co-workers examined how this anisotropy is enhanced or
reduced as a function of particle density [216] using a single phase field variant of the model discussed
here. At low density they found free dendrites tips growing along the 〈11〉 directions. The morphology
of these solid state dendrites resembles in every way the dendrites discussed earlier in the context of
solidification. Figure (7.5) shows a comparison of a phase field simulation with experiments. The work
of Yeon and co-workers showed that the interaction of overlapping diffusion fields during precipitation
can stunt or entirely retard the anisotropic dendritic morphology shown in Fig. (7.5). Similar dendritic
morphologies are expected when the elastic coefficients of precipitate particles are anisotropic [153].

When the anisotropies of surface energy and elastic coefficients are mis-aligned, it is expected that the
competing dendritic orientations will lead to interesting morphologies, such as the seaweed-like structures
discussed in the context of solidification in section (6.10.4). Greenwood and co-workers recently examined
the precipitation of elastically anisotropic particles in an isotropic matrix using a singe phase field model
with elastic strain effects [89]. Their model followed the approach of Karma and co-workers, which
judiciously selects the model’s interpolation functions in order to make surface energy free of concentration
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Figure 7.4: Comparison of simulated particles sizes in Fig. (7.3) to corresponding experiments. Also
shown are fits to the data. Reprinted from Ref. [221].

in order to cope with diffuse interfaces. The precipitates in the study of Greenwood et. al have a 4-fold
anisotropy in both their surface energy and their elastic coefficients. Surface energy anisotropy is given
by Eq. (5.25). Cubic elastic coefficients are considered in each phase, for which the surviving elements of
the elastic tensor are C11, C12, C44. Anisotropy is introduced into cubic elastic coefficients by introducing
a small parameter β = C44 − (C11 − C12)/2, which characterizes the deviation of C44 from its isotropic
value. Their study showed that as β and ε4 were varied a morphological transition from surface energy
dominated dendrites [153] to dendrites that grow along the elastic anisotropy directions (the latter are
also reported in Ref. [191]). Figure (7.6) illustrates this phenomenon. The red line indicates the (β, ε4)
phase space where morphologies are isotropic and resembles many features of seaweed.

7.2 Multi-Phase Field Models

Multi-phase field models differ from the methods above in that they treat the phase field as a volume
fraction. This imposes a constraint that must self-consistently be incorporated into the dynamics. As with
the very similar looking multi-order parameter method, the concentration is partitioned into individual
components that are mathematically tied to each phase. As a result, two phase interfaces can maintain a
simple expression for the surface energy even for very diffuse interfaces 4. Like their ”cousin” multi-order
parameter phase field models, no thin interface mapping has been calculated presently for most of these
models. As a result, they may lack accuracy in problems involving moderate to rapid solidification rates
from a melt. However in the description of precipitation and related transformations whose kinetics
can be assumed to be limited by diffusion and curvature, these models are quite accurate. Indeed, at
present, there even exists a successful commercial software 5 used by some industries to predict features

4These are still very small mall compared to the scale of a typical microstructure and diffusion length of impurities
5MICRESS, Part of the software ACCESS, Aachen.
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Figure 7.5: Comparison between experimental solid state dendrite (top left) and simulated sold state
dendrite (main). Reprinted from Ref. [216].

of microstructures in metal alloys.

7.2.1 Thermodynamics

Anther and one of the earliest class of multi-phase field models assign the concept of a volume fraction
to N phases, each of which is represented by a volume fraction field φα, where α indexes a phase in the
system. As such, the following fundamental constraint must be applied to the N volume fractions

N∑
i=1

φα = 1 (7.22)

As with the formulation of Kim and co-workers the idea is that a two-phase interface is made up of a
combination of the two phases. Moreover, this formalism also decomposes the concentration into a linear
combination of separate concentrations Cα corresponding to the phase α, i.e.

c =

N∑
α=1

h({φα})Cα (7.23)

The function h({φα}) is an interpolation function that is one when φα = 1 for some α and φβ = 0 when
α 6= β. Once again the constraint of equal chemical potential is applied between any two phases, i.e.

∂fα(Cα)

∂c
=
∂fβ(Cβ)

∂c
(7.24)

for any two α − β pairs of phases. Equations (7.23) and (7.24) define N equations in N unknowns, the
solution of which determines the Cα from any combination of volume fractions {φα} and concentration
field c.
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Figure 7.6: Morphological phase space of dendritic precipitate growth. For parameters above the red line,
dendrite tip growth proceeds along the surface energy dominate directions. Below the line, precipitates
grow branches in the directions governed by the anisotropy of the elastic constants. Along the line,
isotropic structures similar to seaweed emerge. Reprinted from Ref. [89].

The free energy of the multi-volume fraction formalism is given by

F
[
{φα}, c

]
=

∫
V

[ N∑
α,β, α<β

(
kαβ
2
|φα∇φβ − φβ∇φα|2

)
+ g({φα}) + f ({φα}, {Cα})

]
dV , (7.25)

where the gradient term now takes a more general form that makes it possible to manipulate the surface
energy of each α− β interface separately. The bulk free energy in this formalism is interpolated between
phases by

f({φα}, {Cα}) =

N∑
α=1

h(φα)fα(Cα, T ) (7.26)

where fα(Cα, T )) is the corresponding free energy of phase α. The function g({φα}) takes on various
forms depending on the multi-volume fraction method. The simplest is a multi-well type of the form

g({φα}) =

N∑
α,β, α<β

wαβφ
2
αφ

2
β (7.27)

Other forms of the obstacle potential have also been proposed for g({φα}) [19, 30]. Their use here is
related to the possible emergence of third phases in two-phase interfaces. In addition, Nestler and co-
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workers have also developed the formalism to incorporate non-isothermal solidification [77, 78, 19]. These
developments are left to the reader and will not be discussed further here.

As with the multi-order parameter method discussed in the previous section, the application of
Eqs. (7.23) and (7.24) removes any explicit contribution from the impurity concentration from the result-
ing steady state free energy 6. As a result, the excess energy of any α− β interface is uniquely described
only by the constants kαβ and wαβ . In particular, the surface energy σαβ and associated interface width
of each phase boundary Wαβ work out to [193, 61] be

σαβ =

√
kαβwαβ

3
√

2

Wαβ =

√
2kαβ
√
wαβ

(7.28)

Which are the same as Eqs. (7.14). As an example, of how Eqs. (7.28) are derived, consider the simple
case of an α− β interface. In this case Eq. (7.22) requires that φα = 1− φβ . Considering this constraint
on volume fractions and ignoring the concentration terms, the steady state free energy becomes

F
[
{φα}, φ, β

]
=

∫
V

(
kαβ
2
|∇φβ |2 + wαβφ

2
β(1− φβ)2

)
dx, (7.29)

The solution of which is φβ =
[
1− tanh

(
x/
√

2Wφ

)]
/2 and the solutions of which are given by Eq. (6.50)

with Wφ ≡Wαβ/
√

2.

7.2.2 Dynamics

The dynamics of multi-volume fraction methods must preserve Eq. (7.22). This is done by replacing
Eq. (7.25) by Ftot = F + Fcons, where Fcons is given by

Fcons

[
{φα}, c

]
=

∫
V

λ

[ N∑
α=1

φα − 1

]
dV , (7.30)

Here λ is a Lagrange multiplier determined such as to impose the conservation of volume fraction.
Minimizing Fcons with respect to λ and substituting the expression back into Fcons, and then applying
the usual variational minimization for each volume fraction field φα gives,

∂φα
∂t

= −Γφα
N

N∑
α

(
δF

δφα
− δF

δφβ

)
+ ηi(~x, t) (7.31)

Equation (7.31), combined with Eq. (7.13) for the evolution of concentration, completely specifies the
multi-volume fraction dynamics. As in section (7.1.2), variational derivatives with respect to φα require
partial derivatives of f({φα}, {Cα}), which in turn require knowledge of ∂Cα/∂φα. The procedure for
evaluating these partial derivatives is precisely analogous to that presented in sections (6.9) for single
phase solidification. Finally, a noise term has been appended to Eq. (7.31) to simulate interface fluc-
tuations, even though it is not clear how to connect volume fraction fluctuations and true atomic-scale
fluctuations. Further discussion of the properties of multi-phase field models, with applications to second
phase formation, is given in Ref [108].

6What this means is that the variation of the steady state concentration fields through the interface are “slaved” to the
variation of the volume fraction (phase) fields and thus completely determined in terms of them.
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7.3 Orientational Order Parameter for Polycrystalline modeling

Perhaps the most self-consistent way of describing multiple crystal orientations in traditional phase field
theory is via an orientational order parameter θ(~x), which can be loosely interpreted as a phase factor

implicit in the crystal order parameters 〈 ei ~G·~xn〉, which were defined in section (5.1). In this type of phase
field model, the orientational order parameter θ(~x) is coupled to one solid-liquid order parameter φ. In the
case of solidification, φ controls transitions between solid and liquid and θ defines orientational changes
between different grains. A free energy functional expressed in terms of these two fields, in addition to
the usual concentration and temperature, can be used to derive equations of motion for solidification and
interactions of grain boundaries. The θ− φ formalism began with the work of Kobayashi and co-workers
[128, 205] as an alternative to the multi-phase field approach. A polycrystalline model for solidification of
a pure material was first examined, with preliminary two dimensional test results. A more detailed work
for solidification of a pure material and a full extension to two dimensional simulations, which considered
grain boundary energy, impingement, coarsening and grain boundary melting was later presented [206].
This formalism was then extended to binary alloy solidification by Gránásy and co-workers [83, 84, 86],
who also considered nucleation and the subsequent growth processes in a binary alloy.

7.3.1 Pure materials

The starting point for phase field for a pure polycrystalline material is a free energy expressed in terms
of θ, φ and T (temperature is often non written explicitly but is understood to enter the free energy
parameters). Its basic form is developed by Kobayashi and co-workers [128, 129] and later studied more
extensively by Warren and co-workers [206]. It is given by

F =

∫
V

dV

[
ε2φ(∇φ, θ)

2
|∇φ|2 + f(φ) + S p(φ) |∇θ|+ εθ

2
h(φ)|∇θ|2

]
, (7.32)

where εφ is the usual gradient energy coefficient, which is dependent of the orientation of the interface
normal (determined by n̂ = ∇φ/|∇φ|) with a respect to an frame of reference in the crystal, which is
oriented at an angle θ with respect to the laboratory frame of reference. The function f(φ) sets the
bulk free energy of the solid and liquid phases. The |∇θ| term is the simplest rotationally invariant 7

expression that describes the grain boundary energy due to orientational mismatch between grains. The
interpolation function p(φ) here assures that this term is only active in solid and zero in iquid. The
parameter S is treated as a constant that can be temperature dependent. Finally, the gradient squared
term is introduced in order to describe rotation of grains with h(φ) an interpolation function that also
activates this term only in the solid.

Equation of motion for φ and θ are given by

τ
∂φ

∂t
= Γφ

[
ε2φ∇2φ− f ′D(φ)− εθ

2
h′(φ)|∇θ|2 − S p′(φ) |~∇θ|

]
, (7.33)

τθ
∂θ

∂t
= Γθ S ~∇ ·

[
ε2θh(φ)∇2θ + p(φ)

~∇θ
|~∇θ|

]
. (7.34)

For simplicity, the above equations assume isotropic coefficients for the kinetic time constants τ and
gradient energy coefficient εφ. The phase field equation is straightforward to derive, as is the θ equation,

7Meaning that the free energy functional does not change if there is a uniform rotation of θ.
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save for the last term. For the rather involved mathematical details of deriving this term, the reader is
referred to Ref. [79, 127]. To the equations above can be added the energy equation to manage thermal
diffusion,

∂T

∂t
= α∇2T +

L

cp

∂φ

∂t
, (7.35)

which is precisely the same form as ”model c” for solidification of a pure material. As mentioned above,
these phase field equations can describe solidification and subsequent grain boundary interactions.

To consider the static properties of this model, consider an isothermal, ”dry boundary” described by
the phenomenological function f(φ) = (a/2)(1−φ)2, which defines only one well, i.e. a single [solid] phase.
For the case εθ = 0 and isothermal conditions, the surface energy is computed for the case p(φ) = φ2

from the steady state equations

ε2φ
d2φ

dx2
+ a(1− φ)− S φ |∂xθ| = 0

d

dx

(
φ2 ∂xθ

|∂xθ|

)
= 0 (7.36)

These have been solved explicitly by Kobyashi and workers [129]. Their solution is θo(x) = |∆θ|δ(x) and
φo(x) = 1 − (1 − φs) exp(−|x|/ν), where ∆θ is the difference in orientations between adjacent grains,
ν ≡ εφ/a and φs ≡ 1/(1+Θo) where Θo ≡ S∆θ/(aεφ). The form of these solutions is shown in Fig. (7.7).
Substituting these profiles back into the free energy, and subtracting the reference solid energy, gives

σ =
S∆θ/a2

1 + (S/εφa)∆θ
(7.37)

where ∆θ is the misorientation between crystals. To leading order in ∆θ Eq. (7.37) gives σ ∼ ∆θ which
is precisely what is expected by the Read and Shockly formula.

For a more general bulk free energy it is expected that the excess energy associated with the surface
energy of a poly-crystal grain boundary will contain contributions from both change of orientation and
from the change of order. The form of the grain boundary energy has been derived by Warren and
co-workers [206]. Procedurally, this is done by integrating the steady state form of Eqs.(7.33) and (7.34)
and substituting the result (φo and θo) into the free energy functional and subtracting the reference bulk
solid energy. This gives, in the εθ = 0 limit,

σ = S p(φmin)∆θ +

∫ ∞
−∞

(f(φo(x)− fs) dx (7.38)

where φmin is the value of the steady state phase field φo(x) in the centre of the grain boundary (the
general forms of φo and θo in this case are again analogous to that in Fig. (7.7)). It is a reference point,
which arises here from a constant of integration of the steady state phase field equation for φo. The
model can be dealt with analytically for the simple choices f(φ) = (a2/2)φ2(1 − φ)2 + fs P (φ) where
P (φ) = φ3(10 − 15φ + 6φ2, p(φ) = φ2 and fs = L(T/Tm − 1), where L and Tm are the latent heat
and melting temperature, respectively. For these choices, the solution of Eq. (7.33) gives a very simple
expression for φo at T = Tm, when fs = 0. For the special case of εθ = 0, this solution gives

φmin = 1− ∆θ

∆θc
(7.39)
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Figure 7.7: Sketch of the φo and θo profiles in the limit when εθ = 0. In this limit θ is a delta function
and there is a sharp cusp (with a minimum φmin) in φo. In practice the phase field equations are simulated
with εθ 6= 0 which makes these fields smoother. Re-printed from Ref. [206].

where ∆θc ≡ aεφ/S.

An interesting feature of Eq. (7.39) is that it predicts the for ∆θ > ∆θc, there is no steady state
solution to the phase field equation (i.e. φmin becomes less than zero). Physically this implies that at the
melting temperature, the grain boundary will melt for a sufficiently high grain boundary misorientation.
This is also seen by considering the width of the grain boundary, which is given by (see Ref.[206] for
mathematical details),

Wgb = −2εφ
a

ln

(
1− ∆θ

∆θc

)
(7.40)

Equation (7.40) shows that the width of the grain boundary increases logarithmically as the critical
mis-orientation angle is approached. For general temperatures T ≤ Tm, Eq. (7.38) can be plotted to
give the grain boundary energy as a function of undercooling ∆T ≡ T − Tm. Figure (7.8) plots σ vs.
∆T for different values of mis-orientaiton ∆θ. The different curves in the figure show that for a given
mis–orientation the grain boundary energy rises with undercooling. This is is a consequence of the fact
that as temperature drops below the melting point, the amorphous (i.e. metastable) material within the
grain boundary finds itself progressively more undercooled, which adds to the energy of the entire grain
boundary. Note that for mis-orientations greater than ∆θc, the grain boundary energy becomes precisely
2σsl, i.e. twice the solid-liquid surface energy. That implies that above a critical mis-orienttion all grain
boundaries melt into a small liquid pool at the melting temperature T = Tm.

The actual grain boundary energy versus orientation requires that a grain boundary definition be
given. For a given mis-orientaiton, Warren and co-workers define the grain boundary, σgb as that value
of σ corresponding to a specific grain boundary width Wgb < W ∗ where W ∗ is W ∗ is determined by
experiments 8. Plotting σgb versus ∆θ gives the well-known Read-Shockely function. Other definitions
of what defines a grain boundary, (degree of order, etc) lead to the same Read-Shockely trend. It should
be noted that all the properties discussed here remain qualitatively the same when εθ 6= 0, although the
algebra becomes more messy. The reader is advised to work through the algebra of Ref. [206] for further
practice with orientational dependent phase field models.

As an illustration of the robustness of the θ − φ model to handle solidification, grain impingement
and coarsening, Fig. (7.9) shows a simulation of multiple grains that grow dendritically and then merge
and start to coarsen. In this simulations εθ 6= 0 and thus grain rotation is evident. The only other way

8This is likely a very difficult parameter to measure practically.
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Figure 7.8: Plots of the surface energy, normalized with respect to the solid-liquid surface energy, versus
undercooling. Different curves correspond to different grain mis-orientation. Re-printed from Ref. [206].

to simulate this effect is via the so-coined phase field crystal model discussed later in this book. Also,
in order to examine dendritic features of the grains, anisotropy has to be added to the gradient energy
coefficient, as is the case in all models. In this simulation is was only added to the εφ|∇φ|2 term in
the free energy functional. It could (and should from the perspective of the asymptotic analysis of this
model) be added to τ as well. The simulation of Fig. (7.9) also solved Eq. (7.35) to treat non-isothermal
conditions.

As discussed at the beginning of this chapter the diffuse interface limit of the θ − φ model –or any
other current multi-order parameter or multi-phase field model– is presently lacking. As such results such
as those of Fig. (7.9) are only qualitative in the solidification phase. The slower solid state dynamics
of this model are not as prone to artificially induced kinetics caused largely by rapidly moving diffuse
interfaces. As such, θ− φ type models, as well as the other ”brand” of phase field models studied in this
chapter are a very robust way of elucidating the properties of grain boundary formation and coarsening
kinetics. It should be noted, however, that certain features of grain boundaries and elasticity cannot
be studied using these –or previous– types of phase field models since they do not contain atomic-scale
effects.

7.3.2 Alloys

The θ− φ can also be extended to study polycrystalline solidification in alloys. The basic version of this
model was developed by Granasy and co-workers based on the original work of Kobyashi, Warren and
co-worker for a pure material. The basic alloy θ − φ model presented here is presented in Ref. [2]. The
starting point is this specific model is the free energy functional

F =

∫
V

dV

[
ε2φ
2
|~∇φ|2 +

ε2c
2
|~∇c|2 + f(φ, c) + fori(φ, ~∇θ)

]
, (7.41)
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Figure 7.9: Simulation of growth, impingement and coarsening of multiple seeded grains. Color represent
different orientations. The virtual sample is initially held at some fixed undercooling and then, after some
time, continuous heat extraction is applied. Re-printed from Ref. [206].

where εφ and εc are the usual gradient energy coefficient for the order change and concentration. In this
particular model the solid is defined by φ = 0 and the liquid by φ = 1. The bulk free energy density
f(φ, c) is thus given by

f(φ, c) = H(c)fD(φ) + p(φ)fl(c, T ) + (1− p(φ))fs(c, T ) (7.42)

where l denotes liquid and s solid. The function p(φ) is an interpolation function that is zero in the solid
and one in the liquid. The orientational energy density fori used here is

fori(φ, ~∇θ) = S(1− p(φ)) |~∇θ| (7.43)

The function H(c) = (1− c)HA+ cHB sets the energy scale proportional to the nucleation barrier height.
The function fD(φ) is an interpolation function that sets an energy barrier between solid and liquid.
Particularly useful choices of these functions are fD = φ2(1 − φ)2 and p(φ) = φ3(6φ2 − 15φ + 10). The
parameter S is a constant chosen to reproduce the energy of low-angle boundaries. In θ − φ models θ
is defined only in the crystalline phase (φ = 1), scaled between 0 and 1, while it is chosen to fluctuates
–or do something innocuous– in the disordered phase. Anisotropy of the solid-liquid surface energy is
added to the model by letting εφ → εφ (1 + ε cos (mΘ− 2πθ)) where Θ = arctan (∂yφ/∂xφ). The angle Θ
measures the angle of the interface normal with respect to the laboratory frame. Thus, Θ− θ measures
the angle of the interface normal relative to the orientation of the grain.

The dynamics of c and φ in the above formulation follow from the usual variation principles. The
phase field evolves according to

∂φ

∂t
= Γφ

[
ε2φ∇2φ−H(c)Tf ′D(φ)− p′(φ)

(
fs(c, T )− fl(c, T ) + ST |~∇θ|

)]
, (7.44)
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The concentration of impurities follows the usual mass conservation law

∂c

∂t
= ~∇

(
M(φ, c)~∇µ

)
(7.45)

where
M(φ, c) =

vo
RT

c(1− c) [Dsp(φ) +Dl(1− p(φ))] (7.46)

and

µ =
δF

δc
= ~∇

[
(HB −HA)TfD(φ) + p(φ)

∂fs
∂c

(c, T ) + (1− p(φ))
∂fl
∂c

(c, T )− ε2c∇2c

]
(7.47)

Care must be is taken in deriving the equation for the orientation order parameter and its treatment
during simulation, since it is prone to produce singular diffusivities. Kobayashi and Giga [127], have
outlined the proper steps to be taken in deriving such a variational and how it should be dealt with. The
evolution equation is then,

∂θ

∂t
= ΓθST ~∇ ·

[
p(φ)

~∇θ
|~∇θ|

]
. (7.48)

This and the previous θ−φ formulation for a pure material can be mapped onto classical sharp interface
equations in the limit of vanishing interface width.
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Chapter 8

Phase Field Crystal Modeling of
Pure Materials

Previous chapters used a scalar field that is spatially uniform in equilibrium to model solidification. In
this description a liquid/solid surface is represented by a region in which the field rapidly changes from
one value to another. While the simplicity of this description is advantageous for computational and
analytic calculations there exist situations in which the approach is inadequate. For example crystal
symmetry can influence the shape and eventual anisotropic shape of the dendrite. While this detail can
be integrated into traditional models other aspects of crystal growth are more difficult to account for.
For example consider the common phenomenon of the nucleation (heterogeneous or homogeneous) of a
crystalline phase in a supercooled liquid as depicted in Fig. (8.1). Initially small crystallites of arbitrary
orientation nucleate and grow until impingement occurs and grain boundaries and triple junctions form.
Further growth is then dominated by motion of the grain boundaries and triple junctions. To model
this phenomena a model must incorporate the physics associated with liquid/solid surfaces, elasticity,
dislocations, anisotropy, grain boundaries and crystals of arbitrary orientation. While these features
are quite difficult to incorporate into standard phase field models of solidification, it turns out they are
naturally included in models that are minimized by fields that are spatially periodic in equilibrium. One
such model is the so-called phase field crystal methodology (PFC), which exploits this feature for modeling
crystal growth phenomena.

The PFC model essentially resolves systems on atomic length and diffusive time scales and as such lies
somewhere in between standard phase field modeling and atomic methods. The advantage of incorpo-
rating atomic length scales is that mechanisms associated with the creation, destruction and interaction
of dislocations in polycrystalline materials are automatically captured. It turns out that it is relatively
simple to model these features by introducing a free energy that is a functional of a conserved field, is
minimized by periodic solutions and is rotationally invariant. In fact many such free energy functionals
have been proposed for various physical systems that form periodic structures. This chapter studies the
phase field crystal (PFC) model, which is a conserved version of a model developed for Rayleigh-Bénard
convection, known as the Swift-Hohenberg equation [194], and which can be seen as a spacial case of
a density functional theory. Before outlining the details of the PFC model, the chapter begins with
a discussion of the general properties of periodic systems and how such free energies can model many
features of crystalline systems.
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Figure 8.1: Atomic number density field of a partially solidified supercooled melt. The grey scale cor-
responds to the atomic number density field which is uniform (hexagonal) in liquid (solid) regions. Red
arrows indicate the orientation of three grains, the blue line highlights the liquid/solid interface, the pur-
ple lines show a single dislocation between two grains of similar (but different) orientation. The yellow
box encloses a grain boundary between two grains with a large orientational mismatch.

8.1 Periodic Systems and Hooke’s Law

Periodic structures arise in many different physical systems, such as crystals, block co-polymer films,
charge density waves, magnetic films, superconducting vortex lattices and Rayleigh-Bénard convection.
In some cases these patterns can be characterized by free energy functionals, while in others the systems
are constantly driven far out of equilibrium and the patterns cannot be described by such functionals.
For the purposes of this chapter it will be assumed that such functionals exist. While the physical
mechanisms that give rise to these patterns are significantly different there are some generic (perhaps
obvious) features that are worth discussing. First in a periodic system there is a specific length scale (or
set of length scales) that characterizes the equilibrium or stationary states. For example a crystalline
state can be characterized by the principle reciprocal lattice vectors, while a block co-polymer system
might be characterized by a stripe width. For illustrative purposes consider a system characterized in
equilibrium by one length scale, aeq. The energy associated with a stretch or compression of the system
can be obtained by expanding F around aeq, i.e.,

F(a) = F(aeq) +
∂F
∂a

∣∣∣∣
aeq︸ ︷︷ ︸

=0

(a− aeq) +
1

2

∂2F
∂a2

∣∣∣∣
aeq

(a− aeq)2
+ · · · (8.1)

The second term is zero since F is a minimum when a = aeq, thus to leading order in ∆a,

∆F =
k

2
(∆a)2 (8.2)

146



where ∆F ≡ F − F(aeq), k ≡ (∂2F/∂a2)|aeq and ∆a ≡ a− aeq. This result is identical to the potential
energy of a spring, i.e., Hooke’s Law! This illustrates the fact that elastic energy, defined as the gain in
free energy upon deformation, is naturally incorporated by free energies that are minimized by periodic
functions.

The second important feature of periodic systems is the nature and interactions of the defects. In
general the type of defects are controlled by the nature of the fields (eg., real, complex, periodic, uniform)
that create the patterns. For example, in systems defined by uniform scalar fields (such as concentration or
magnetization) the defects are interfaces. In periodic systems such as block-copolymer films and crystals,
line or point defects typically emerge. For periodic systems the precise type of defects depends on the
symmetry of the periodic state, in essence geometry completely controls the topological defects that can
form. Thus a rotationally invariant free energy functional that produces an FCC pattern can naturally
give rise to all possible defects associated with FCC crystal lattices. In addition, by construction, such a
model will have the anisotropies associated with the FCC lattice. The free energy must be rotationally
invariant since the free energy should not be a function of the orientation of the crystalline lattice. If such
a free energy can be constructed then it naturally allows for multiple crystal orientations since they all
have equivalent energy. Finally coexistence between, for example, uniform (i.e., liquid) and periodic (i.e.,
crystalline) phases, can occur if the periodically varying field is conserved, since a Maxwell equal area
construction (also called the “common tangent construction”) will be required to obtain the equilibrium
states. In the next section perhaps the simplest continuum model describing periodic structures will be
presented and analyzed before the PFC model is introduced and detailed.

8.2 A Classic Periodic System: The Swift-Hohenberg Model

The central topic of this section is on how to construct free energy functionals that are minimized by
periodic patterns. It turns out this is quite simple and can be illustrated by considering the usual ‘φ4’
free energy functional,

F =

∫
d~r

(
ψ
G

2
ψ +

u

4
ψ4

)
. (8.3)

As we learnt earlier, the free energy will have a single well if G > 0 and two wells if G < 0. We now
consider G as an operator, which we wish to construct such that F is minimized by a periodic function,
for example ψ = A sin(qx) in 1D. For simplicity consider expanding G in one dimension as follows,

G = g0 + g2
d2

dx2
+ g4

d4

dx4
+ g6

d6

dx6
+ · · · . (8.4)

where odd derivatives are not included as that would imply that the free energy depends on the direction
of the gradient. Keeping only g0 and g2 terms just gives back a theory, with uniform equilibrium states
separated by at most a simple diffuse interface. To see how G can be tailored to give periodic state, let
ψ = A sin(qx) and substitute it into G. This gives,

Gψ =
(
g0 − q2g2 + q4g4 − q6g6 + · · ·

)
ψ = Ĝ(q)ψ, (8.5)

where Ĝ(q) ≡ q0 − q2g2 + q4g4 − q6g6 + · · ·. This implies that the free energy functional becomes,

F =

∫
d~r

(
Ĝ(q)

ψ2

2
+
u

4
ψ4

)
. (8.6)
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Figure 8.2: Examples of function Ĝ(q). In figure (a) the Swift-Hohenberg Ĝ is plotted for ε = 3/4 and
qo = 1. In figure (b) the standard ‘Model A’ Ĝ is plotted as a function of q for K = 1 and |r| = 3/4. The
interesting feature of this plot is that in the Swift-Hohenberg case Ĝ is a minimum at a finite q, while for
Model A, Ĝ is a minimum at q = 0, corresponding to a uniform (infinite wavelength) case.

Equation (8.6) shows that when Ĝ(q) is positive F has one well (at ψ = 0, or A = 0) and when Ĝ(q) is
negative F has two wells (one at A = 0 and the other at some A 6= 0, i,e, a periodic solid). In the latter
case, the periodicity of the solid is largely determined by the value of q that minimizes Ĝ (corrections
due to higher order fourier components can alter this periodicity). For example, If Ĝ is most negative at
q = 0 then the two phase states consists of spatially uniform phases as in standard phase field models.
Models A or B are examples of this situation, since for these theories Ĝ = −r +Kq2, where r ∝ T − Tc.
In contrast, when the minimum of Ĝ occurs at a finite value of q (say at qmin) then typically F will be
minimized by a periodic patterns with periodicity close to 2π/qmin. An example of this situation in the
Swift-Hohenberg (SH) model [194], where Ĝ(q) = −ε+ (q2

o − q2)2 (or G = −ε+ (q2
o +∇2)2)), where ε is

a control parameter related to the Rayleigh number. Both these forms of Ĝ(q) are plotted in Fig. (8.2),
illustrating that Ĝ has a minimum at a finite value of q for the SH model and zero for Model A.

In general, the simplest functional form for Ĝ(q) that produces a minima at a finite q occurs when
g0, g2 and g4 are finite and all other coefficients are zero. For instance in the SH equation g0 = −ε+ q4

o ,
g2 = 2q2

o and g4 = 1. In this case the specific wavelength chosen is essentially a competition between g2

and g4. To see this, consider the g2 part of the free energy functional by integrating by parts, i.e.,

g2

2

∫
dxψ

d2

dx2
ψ =

g2

2

∫
dxψ

d

dx

(
dψ

dx

)
=
g2

2

(
ψ
dψ

dx

∣∣∣∣
S

−
∫
dx

(
dψ

dx

)2
)
. (8.7)

In many cases the surface term is zero (as in periodic systems, or zero flux boundary conditions) so that

g2

2

∫
dxψ

d2

dx2
ψ =

g2

2

∫
dx

(
−
(
dψ

dx

)2
)

=
g2

2

∫
dx
(
−|~∇ψ|2

)
. (8.8)

Notice that is precisely the term that appears in Model A (or B), except that the sign is negative. This
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highlights obvious fact that in periodic system, some spatial gradients are energetically favorable. This
term alone would be insufficient as it implies the lowest energy state contains infinite gradients. The g4

term is included to suppress very large gradients.
The Swift-Hohenberg model introduced above [194] was derived for the phenomena of Rayleigh-

Bénard convection in which a fluid (or gas) is trapped between a hot and cold plate. If the difference in
temperature between the two plates is large enough (or more precisely if the Rayleigh number is large
enough) a convective instability occurs in which convective roles form to transport the hot fluid to the
cold plate and cold fluid to the hot plate. The SH model free energy can be considered as the “Model
A” of periodic systems and is written as

F =

∫
d~r

[
1

2
ψ
(
−ε+ (q2

o +∇2)2
)
ψ +

ψ4

4

]
, (8.9)

where the field ψ is a two dimensional scalar field that is commensurate with the convective rolls that form
at high Rayleigh number. The dimensionless parameter, ε, is proportional to deviations of the Rayleigh
number from the critical value at which the convective instability occurs. It is typically assumed that the
dynamics of the field ψ evolve in according to dissipative kinetics and driven to minimize the free energy
functional, i.e.,

∂ψ

∂t
= −Γ

δF
δψ

+ η = Γ
[(
ε− (q2

o +∇2)2
)
ψ − ψ3

]
+ η, (8.10)

where Γ is a phenomenological parameter that can be scaled out, η is a Gaussian random noise term with
correlations 〈η〉 = 0 and 〈η(~r, t)η(~r′, t′)〉 >= 2ΓD δ(~r − ~r′)δ(t − t′) and D is the noise strength. We will
discuss dynamics of continuum field theories further below.

It will prove useful to re-case Eq. (8.10) in dimensionless units. Noting that while Eq. (8.10) contains
four parameters (ε, qo, Γ and D) it is effectively a two parameter model since q0 and Γ can be eliminated
by a simple change of variables. For example if the following definitions are made ~r = ~x/qo, ψ = q2

oφ,
ε = q4

oE and t = τ/q4
oΓ, then Eq. (8.10) becomes,

∂φ

∂τ
= −δF

′

δφ
+ ζ =

(
E − (1 +∇2

x)2
)
φ− φ3 + ζ, (8.11)

where,

F ′ =

∫
d~x

[
1

2
φ
(
−E + (1 +∇2

x)2
)
φ+

φ4

4

]
(8.12)

and 〈ζ〉 = 0 and 〈ζ(~x, τ)ζ(~x′, τ ′)〉 >= 2D′ δ(~x− ~x′)δ(τ − τ ′) and D′ ≡ Dqd−8
o .

Equations (8.9) and (8.10) provide a relatively simple mathematical system that gives rise to periodic
solutions for ψ. In the next several subsections the static (i.e., equilibrium) and dynamic properties of
this model in one dimensions will be discussed. In Section II a very similar equation will be used to model
another type of periodic systems, i.e., crystals. In crystals the field ψ is related to the ensemble average
of the atomic number density and is a conserved quantity. The conservation law changes both static and
dynamics solutions and makes things a bit more complicated. Nevertheless it is instructive to consider
the simpler case as will be done in the next few paragraphs.

8.2.1 Static Analysis of the SH Model

The form of the SH free energy functional is symmetric in ψ, i.e., it only depends on ψ2. This symmetry
leads to equilibrium solutions that are stripes in two-dimensions and planes in three dimensions. As will
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be seen in following sections when this symmetry is broken (by adding asymmetric terms such as ψ3)
other periodic symmetries can form such as triangular in two dimensions and BCC in three dimensions.
The mathematical form of the equilibrium solutions can be found by expanding ψ in a Fourier series and
then minimizing the free energy per unit length with respect to the Fourier coefficients and wavevector,
q. More specifically ψ can be written as,

ψ =
∑
n=1

(Ane
inqx +A∗ne

−inqx). (8.13)

where An is an amplitude associated with the wave mode n. Substituting this form into Eq. (8.9) and
averaging over one wavelength gives,

F ≡ F
2π/q

=
q

2π

∫ 2π
q

0

dx

(
ψ

2
(−ε+ (q2

o +∇2)2)ψ +
ψ4

4

)
= −

∑
n

ωn|An|2 +
∑
n,i,j

(
A∗i+j+nAiAjAn +

3

2
A∗i+j−nAiAjA

∗
n +A∗i−j−nAiA

∗
jA
∗
n

)
(8.14)

where ωn ≡ ε − (q2
o − (nq)2)2. To find the lowest energy state F must be simultaneously minimized

with respect to An for all n and q, i.e., the equations, dF/dAn = 0 and dF/dq = 0 must be solved.
To simplify the task it is useful to consider a finite number of fourier components. For example the
simplest approximation is to retain only one mode, A1, which is equivalent to the approximation ψ ≈
(A1 +A∗1) cos(qx). In this limit the free energy per unit length becomes,

F = −ω1|A1|2 +
3

2
|A1|4 (8.15)

Minimizing with respect to A1 gives, ∂F/∂(|A1|2) = 0 = −ω1 + 3|A1|2, with solutions

|A1|min =

{
0 ω1 < 0

±
√
ω1/3 ω1 > 0

(8.16)

Substituting the non-trivial solution back into F gives,

F = −1

6
ω2

1 = −1

6
(ε− (q2

o − q2)2)2 (8.17)

The value of q that minimizes F is found by solving, dF/dq = 0, which gives, qeq = qo and in turn,

|A1|eq = |A1|min(qo) =
√
ε/3. (8.18)

Thus the solution that minimizes the free energy is,

ψeq = 2

√
ε

3
cos(qox). (8.19)

and the minimum free energy/length is
Fstripe = −ε2/6. (8.20)

Before discussing the dynamic behaviour of the SH model, it is interesting to examine Eq. (8.17),
which describes the free energy as a function of wavevector (or wavelength) and can be used to derive
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an expression for the ‘elastic’ energy associated with a stretch or compression of the striped phase.
Expanding Eq. (8.17) in ∆a ≡ (a− aeq)/aeq, where a is the stripe wavelength (i.e., 2π/q) and aeq is the
equilibrium stripe wavelength (i.e., 2π/qo) gives,

∆F ≡ F − Fstripe =
64π4ε

3 a4
eq

(
∆a

aeq

)2

+ · · · = 4(q2
o |A1|eq)2

(
∆a

aeq

)2

.+ · · · (8.21)

The above equation shows a number of interesting features. To lowest order in ∆a this model obeys
Hooke’s law (i.e., ∆F = k(∆x)2/2), with an effective ’spring constant’ of 8(q2

o |A1|eq)2. The spring
constant is thus proportional to the amplitude |A1|, which is in turn in proportional to ε. In the next
section a model almost identical to the SH model will be used to describe crystal growth in which the
parameter ε is related to temperature. In that context the crystal becomes ‘stiffer’ (i.e., k increases)
as the temperature is lowered. In the above expansion ∆a/aeq was considered to be small compared to
unity, however for large ∆a/aeq a periodic solution may not even exist. Consider for example the solution
for Amin given in Eq. (8.16), i.e.,

|A1|min(q) =

√
ω1

3
=

√
(ε− (q2

o − q2)2)

3
. (8.22)

Since A is a real quantity (at least for this phenomena) there are no periodic solutions for A if

ε < (q2
o − q2)2. (8.23)

Or solutions only exist when √
q2
o −
√
ε < q <

√
q2
o +
√
ε. (8.24)

The implication is that if the system is compressed or stretched too much a periodic solution no longer
exists (i.e., the lowest energy state is ψ = 0). As will be discussed in the next section even when solutions
exist they can be dynamically unstable (an Eckhaus instability). In Fig. (8.3) the regions where periodic
solutions exist are depicted as a function of q and ε. The dynamical behaviour of the SH equation is
examined next.

8.2.2 Dynamical analysis of the SH model

Equation (8.10) describes dissipative dynamics that drive the system towards the equilibrium solution.
While it is very difficult to obtain exact analytic solutions for arbitrary initial conditions, insight can
be gained by considering a simple linear stability analysis about a) an initially uniform state and b) a
periodic equilibrium state. (Consider Γ = 1 for simplicity). The stability of the uniform ψ = 0 state can
be determined by linearizing Eq. (8.10) around ψ = 0, i.e.,

∂ψ

∂t
=
(
ε− (q2

o +∇2)2
)
ψ. (8.25)

where here ψ represents a small deviation away from the uniform solution. Equation 8.25 can be solved
by making the Ansatz for ψ,

ψ(x, t) = Aq(t) cos(qx). (8.26)

where Aq is the amplitude of the perturbation. Substituting Eq. (8.26) into Eq. (8.25) gives,

dAq(t)

dt
= ω1Aq(t) (8.27)
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Figure 8.3: Phase diagram of one dimensional Swift-Hohenberg Equation. The diagonally hatched region
corresponds to regions for which periodic solutions do not exist in the one mode approximation. The
horizontally hatched region corresponds to regions for which periodic solution are dynamically unstable
(Eckhaus instability).

which has solution,

Aq = eω1 tAq (8.28)

where as usual (ω1 ≡ (ε− (q2
o − q2)2)). If ω1 > 0 (< 0), ψ will grow (decay) exponential in time. Since

(q2
o − q2)2 is always positive this implies unstable (stable) growth for ε > 0 (ε < 0). Since (q2

o − q2)2 is a
minimum when q = qo the system is most unstable (i.e., fastest exponential growth) when q = qo. This
is the primary instability that gives rise to the periodic structure and is somewhat similar to Model B,
in that a finite wavelength is initially selected. However in the Swift-Hohenberg equation the wavelength
doesn’t change significantly since the equilibrium solution has a wavevector quite close to qo.

Perhaps a more interesting case is the stability of the periodic stationary solution (i.e., for ε > 0).
Expanding around ψ = ψeq(x) + δψ gives,

∂δψ

∂t
=
(
ε− 3ψ2

eq − (q2
o +∇2)2

)
δψ +O(δψ)2 + · · · , (8.29)

where for the sake of generality the equilibrium solution are represented as ψeq =
∑
n(Ane

iqnx+A∗ne
−inqx).

To solve this linear equation, δψ expanded in the following Fourier series,

δψ =

n=N∑
n=−N

bn(t)ei(nq+Q)x. (8.30)

where N is in principle infinite, but for practical purposes will be set to one. The task is now to solve for
bn(t) in terms of q and Q (a procedure known as Bloch-Floquet theory). Substituting δψ in Eq. (8.29)
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gives∑
n

∂bn
∂t

einqx =
∑
n

ωnq+Qbne
inqx−3

∑
n,m,p

bn

(
AmApe

i(n+m+p)qx + 2A∗mApe
i(n−m+p)qx +A∗mA

∗
pe
i(n−m−p)qx

)
,

(8.31)

where ωnq+Q ≡ ε− (q2
o − (nq +Q)2)2. Integrating over (q/2π)

∫ 2π/q

0
dx e−ijqx then gives;∑

n

∂bn
∂t

δn,j =
∑
n

ωnq+Q bn δn,j − 3
∑
n,m,p

bn
(
AmAp δn+m+p,j + 2A∗mApδn−m+p,j +A∗mA

∗
pδn−m−p,j

)
∂bj
∂t

= ωnj+Q bj − 3
∑
m,p

(
bj−m−pAmAp + 2 bj+m−pA

∗
mAp + bj+m+pA

∗
mA
∗
p

)
(8.32)

which utilizes the following identities,

q

2π

∫ 2π/q

0

dx ei(n−m)qx = δn,m =

{
1 n = m
0 n 6= m

(8.33)

To simplify the above calculations consider a one mode approximation, i.e., |A1| =
√
ωq/3, and An = 0

for n = 2, 3, · · ·. At this level of approximation Eq. (8.32) becomes,

∂bj
∂t

= ωjq+Qbj − 3(bj−2A
2
1 + 2bj |A1|2 + bj+2(A∗1)2). (8.34)

Making a similar one mode approximation for bn (i.e., bn = 0 for n = 2, 3, ...) gives,

∂b1
∂t

= (ωQ+q − 6|A1|2)b1 − 3b−1A
2
1 = (ωQ+q − 2ωq)b1 − b−1 ωq

∂b0
∂t

= (ωQ − 6|A1|2)b0 = (ωQ − 2ωq)b0

∂b−1

∂t
= (ωQ−q − 6|A1|2)b−1 − 3b1(A∗1)2 = (ωQ−q − 2ωq)b−1 − b1 ωq (8.35)

Notice that b0 is conveniently decoupled from b1 and b−1. Thus the solution for b0 is,

b0(t) = e−(2ωq−ωQ)tb0(0), (8.36)

where 2ωq − ωQ < 0 for small Q and thus b0 decays expontially to zero and can be ignored. Making the
ansatz, bn ∼ exp(λt) gives rise to an eigenvalue problem, i.e.,[

λ− (ωQ+q − 2ωq) ωq
ωq λ− (ωQ−q − 2ωq)

] [
b1
b−1

]
= 0 (8.37)

The eigenvalues (λ) are determined by setting the determinate of the matrix in Eq. (8.37) to zero, which
gives the solutions

λ± =
1

2

(
ωQ+q + ωQ−q − 4ωq ±

√
(ωQ+q − ωQ−q)2 + 4ω2

q

)
. (8.38)
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Figure 8.4: Eckhaus instability in the one dimensional Swift Hohenberg equation. In this figure the color
corresponds to the magnitude of ψ and the horizontal and vertical scales correspond to space and time
respectively. In both instances the initial state was ψ = 2

√
(ε− (1− q2)2)/3 cos(qx) + η, where η was

random gaussian noise of amplitude 0.05. In Figs. a) and b) q = 0.88 and 1.115 respectively.

Since bn ∼ eλt the solutions are unstable if either eigenvalue is positive. For q ≈ qo both eigenvalues
are negative and the system is stable. When q is much larger or smaller than qo, one of the eigenvalues
(λ+) become positive and an instability occurs. This implies that if the initial state is periodic, but
the periodicity is far away from the equilibrium solution, then any small perturbation will grow and the
system will evolve into another periodicity closer to the equilibrium one. This is known as an Eckhaus
instability. When such an instability occurs the wavelength (or q) will spontaneously change by either
creating an extra wavelength or deleting one.

To better understand the Eckhaus instability, it is instructive to expand λ± to lowest order in Q,
which gives,

λ+ = −2

(
3 q2 − q2

o −
4(q2

o − q2)2q2

ωq

)
Q2 + · · · (8.39)

λ− = −2ωq − 2

(
3 q2 − q2

o +
4(q2

o − q2)2q2

ωq

)
Q2 + · · · . (8.40)

The eigenvalue λ− is always negative or zero and thus not of much interest, however the coefficient of Q2

in Eq. (8.39) can be positive for some values of q. The boundary between a negative and positive value
occurs when ε = εEck(q) where,

εEck =
(7 q2 − q2

o)(q2
o − q2)2

3 q2 − q2
o

. (8.41)

This solution determines the boundary between periodic solutions that are stable and unstable. In Fig.
(8.3) the regions where periodic solutions are dynamically unstable are shown. When this instability
occurs the perturbations initially grow exponentially until a phase slip occurs in which one or more
periods is gained or lost, depending whether or not the wavelength of the initial state was too small or
large. Examples of such processes are shown in Fig. (8.4). In the next section a similar model will be
introduced to model crystal growth. For crystal growth the corresponding Eckhaus instability can be
associated with the nucleation of dislocations.

An additional interesting feature of this calculation is that it can be used to determine an effective
diffusion constant of the system. For perturbations around the lowest energy state (q = q0 in one-
dimension and wqo = ε) Eq. (8.39) becomes

λ+ = −4q2
oQ

2 +O(Q)4 + · · · (8.42)
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Or in other words the perturbations satisfy a diffusion equation (in the long wavelength limit) with
diffusion constant

Dv = 4 q2
o . (8.43)

Figure 8.5: Two dimensional ordering in the Swift-Hohenberg model in Eq. (8.10). In this figure the color
corresponds to the magnitude of ψ. These simulations were conducted for (ε, qo,Γ, D) = (0.1, 1, 1, 0), in a
system of size (128×128) and Figs a), b) c), d) correspond to times t = 100, 200, 400 and 800 respectively.

This subsection has thus far focussed on the one dimensional properties of the SH equation. In two
dimensions the mean field equilibrium solutions remain the same (i.e., stripes), however the dynamics
are significantly more complex since the stripes can form in any orientation. A sample two dimensional
simulation is shown in Fig. (8.5). Ordering or coarsening of stripe patterns has been the subject of
many studies [71, 70, 57, 95, 32]. Earlier studies [71, 70, 57, 95] indicated a dynamic growth exponent of
n = 1/5 without noise and n = 1/4 with noise. Later studies showed that the exponent changes with the
magnitude of the noise and frozen glassy states emerge at zero noise strength [32].

The Swift-Hohenberg equation is a simple model system for studying the formation and ordering of
modulated or striped phases in 1D, as well as striped and hexagonal phases in 2D. It is also straight
forward to extend the model to more complex crystal structures in 3D by adding additional terms such
as a cubic term to the free energy functional in Eq. (8.9), i.e.,

F =

∫
d~r

[
1

2
ψ
(
−ε+ (q2

o +∇2)2
)
ψ + α

ψ3

3
+
ψ4

4

]
. (8.44)

The additional term breaks the ± symmetry of ψ such that (for positive α) the energy is smaller for
negative ψ. For example, for small α the stripe solutions still exist, however the width of the positive
portion shrinks and the negative portion grows. For large enough α the stripes break apart and form
dots or mounds as shown in Fig. (8.6). Energetically it is most favorable for these dots to order into a
triangular pattern. Notably grains of arbitrary orientation naturally emerge and form grain boundaries
when two grains hit. It is precisely these features that lead to the idea that such models could be used
to model crystal growth.

8.3 The Phase Field Crystal (PFC) Model

As illustrated with the SH equation above, continuum models that are minimized by periodic structures
contain much of the generic ingredients, such as elasticity, dislocations, multiple crystal orientations
and anisotropy, needed for modeling crystal growth, as illustrated in the preceding section. It was this
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Figure 8.6: Two dimensional ordering in the Swift-Hohenberg equation with extra cubic term in free
energy functional (see Eq. (8.44)). In this figure the color corresponds to the magnitude of ψ. These
simulations were conducted for (ε, qo,Γ, D, α) = (0.1, 1, 1, 0, 1/2), in a system of size (128× 128) and Figs
a), b) c), d) correspond to times t = 100, 200, 400 and 800 respectively.

observation that motivated the development of the so-called phase field crystal (PFC) model [63, 68],
which is simply a conserved version of the SH equation, i.e., Eq. (8.10) with the right hand side multiplied
by −∇2. This modification fixes the average value of ψ (ψ̄) and effectively adds a cubic term to the free
energy functional when ψ̄ is non-zero. As seen in the last section, cubic terms can give rise to more
interesting solutions such as triangular and BCC patterns in two and three dimensions respectively. In
addition to altering the equilibrium solutions, the conservation law also makes a significant impact on
the dynamics. For example in the SH equation a defect, such as an extra stripe randomly inserted into
an equilibrium pattern, can spontaneously disappear. However when the dynamics are conserved, defect
motion such as climb, can only occur by vacancy diffusion [27]. In other words an extra row of atoms
cannot simply disappear, they must diffuse away. While the SH free energy functional was originally
proposed for modeling crystal growth it was later recognized that this model could be derived from
classical density functional theory (CDFT). This derivation involves many crude approximations, but
does give some physical insight into the parameters that enter the model. In the next few paragraphs
this derivation will be outlined.

The derivation begins from the CDFT of freezing as proposed by Ramakrishnan and Yussouf [177]
and reviewed by Singh [188]. It should also be possible to connect the PFC model to the atomic density
theory of Jin and Khachaturyan, which was recently proposed [111]. A nice description of CDFT can
also be found in Chaikin and Lubensky [45]. In this theory the Helmhotz free energy, F , is derived
by expanding around the properties of a liquid that is in coexistence with a crystalline phase. In this
formulation F is a functional of the local number density, ρ(~r) of atoms in the system. Formally the
solution is

∆F
kBT

=

∫
d~r

δF

δρ

∣∣∣∣
`

δρ +
1

2!

∫
d~r1d~r2

δ2F

δρ1δρ2

∣∣∣∣
`

δρ1δρ2 +
1

3!

∫
d~r1d~r2d~r3

δ3F

δρ1δρ2δρ3

∣∣∣∣
`

δρ1δρ2δρ3 + · · ·

(8.45)
where, the subscript ` refers to the reference liquid state, δρ ≡ ρ − ρ` and ∆F ≡ F − F`. The above
expression is a functional Taylor series expansion. Ramakrishan and Yussouff showed that the second
term is equivalent to the entropy of an ideal gas, i.e.,

δF

δρ

∣∣∣∣
`

δρ = ρ ln

(
ρ

ρ`

)
− δρ (8.46)
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and that the higher order terms are directly related to direct correlation functions, i.e.,

δnF

δρ1δρ2 . . . δρn
= −Cn(~r1, ~r2, ~r3, . . . , ~rn) (8.47)

where Cn are direct correlation functions. These functions measure correlations between the atomic
number density at various points in space. For example C2 gives a measure of the probability that if an
atom exists at point ~r1 that another particle also exists at point ~r2. The advantage of expanding around
the liquid state is that liquids are typically isotropic and have short range order. This implies that the
correlation functions are also isotropic and short-ranged. In the crystalline state the correlations functions
are anisotropic, mimicking the symmetry of the crystalline lattice, and long-ranged (i.e., Bragg peaks in
Fourier space). Thus it would not be possible to expand around the solid-state correlation functions
since this would lead to free energy functionals that are not rotationally invariant. In what follows it will
be assumed that C2 is only dependent on the distance between the two points, i.e., C2(~r1, ~r2) = C2(r),
where r ≡ |~r1 − ~r2|. Reiterating, this is a key approximation that can only be made in the liquid state
and ensures that the free energy functional is invariant under a global rotation of the density field.

Using Eq. (8.47) the CDFT free energy functional can be written

∆F
kBT

=

∫
d~r

[
ρ ln

(
ρ

ρ`

)
− δρ

]
− 1

2!

∫
d~r1d~r2C2(~r1, ~r2)δρ1δρ2−

1

3!

∫
d~r1d~r2d~r3C3(~r1, ~r2, ~r3)δρ1δρ2δρ3+· · ·

(8.48)
While this free energy has been used to study freezing transitions in a wide variety of systems [177, 188],
it is inconvenient for numerical calculations of non-equilibrium phenomena. Typically the solutions for
ρ that minimize F are very sharply peaked in space and consequently require a high degree of spatial
resolution such that it may require 100d (where d is dimension) mesh points to resolve a single atomic
number density peak.

In the next few pages several simplification will be introduced to develop a model that, while retaining
the essential features of crystals, is much easier to numerically simulate. It should be noted that the
simplifications are quite drastic, resulting in a model that is a poor approximation to the CDFT. The
goal is not to reproduce CDFT but to motivate a phase field scheme that incorporates the ‘essential
physics’. Despite the inaccuracy of the resulting model it is an interesting exercise as the parameters
of the simple model can be directly related to the correlation functions that enter CDFT and thus give
some interesting insight. To match the resulting model with an experimental system a more pragmatic
approach should be taken, as discussed in section 8.7.

To begin the derivation, it is convenient to introduce the dimensionless number density field, n, defined
such that

n ≡ (ρ− ρ̄)/ρ̄, (8.49)

where ρ̄ is constant reference density (usually taken to be the density of the liquid at coexistence). In the
following calculations n will be assumed to be a small parameter and the free energy functional will be
expanded to order n4. It should be noted that in the full CDFT solution, n is not small. For example, in
Fe at T = 1772K and ρ̄ = 0.09Å−3 (i.e., close to the melting temperature) n can be on the order of forty
or fifty near the center of lattice cites [106]. Further simplifications are made by truncating the density
functional series in Eq. (8.48) at C2 and expanding C2 in fourier space upto k4, i.e.,

Ĉ(k) ≈ −Ĉ0 + Ĉ2k
2 − Ĉ4k

4 (8.50)

where for convenience the subscript “2” has been dropped. It is useful to note that the fourier transform
of this function (Ĉ(~k)) is related to the structure factor (S(k) = 〈|δρ̂(k)|2〉) as follows S(k) = 1/(1− ρ̄Ĉ).
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Figure 8.7: Sketch of two point direct correlation function in Fourier space.

In this approximation Ĉ(k) has been expanded to the lowest possible order that captures the periodic
nature of crystalline systems. A sample sketch of such a function is given in Fig. (8.7). Essentially the
parameters Ĉ0, Ĉ2 and Ĉ4 can be used to fit the first peak in the Ĉ. From a more practical point of view
these parameters can be used to fit various physical features of the material as discussed in references
[213, 3, 106] and in Sec. (8.7). Substituting Ĉ(k) into Eq. (8.48) gives 1

∆F
kBTV ρ̄

≈ ln

(
ρ̄

ρ`

)
+
ρ` − ρ̄
ρ̄

+
1

V

∫
d~x

[
B`

2
n2 +

Bx

2
n
(
2R2∇2 +R4∇4

)
n− tn

3

3
+ v

n4

4

]
(8.51)

where t = 1/2, v = 1/3, B` ≡ 1 + ρ̄Ĉ0, Bx ≡ ρ̄(Ĉ2)2/4Ĉ4, R ≡
√

2|Ĉ4|/Ĉ2 and V ≡
∫
d~x ≡

∫
dxdydz.

Since only one length scale (R) appears in Eq. (8.51) it can be eliminated by a simple length rescaling,
i.e.,

∆F
kBTV ρ̄

≈ ln

(
ρ̄

ρ`

)
+
ρ` − ρ̄
ρ̄

+
Rd

V

∫
d~r

[
n

2

(
∆B +Bx(1 +∇2)2

)
n− tn

3

3
+ v

n4

4

]
(8.52)

where ~r ≡ ~x/R and ∆B ≡ B` − Bx. This form is of course remarkably similar to the SH equation (see
Eq. (8.44)). The free energy in Eq. (8.52) contains only two parameters, B` and Bx. The parameter B`

is the inverse liquid state isothermal compressibility 2 (in dimensionless units) and as will be shown, Bx

is proportional to the magnitude of the elastic constants. In physical terms the three parameters control,
the length scale and the energies scales of the liquid and solid states.

To relate Eq. (8.52) to the Swift-Hohenberg description a simple change of variables can be made,

1In real space variables, the expression in Eq. (8.50) becomes C(~r1, ~r2)=C(|~r1−~r2|)=
(
−Ĉ0 − Ĉ2∇2 − Ĉ4∇4

)
δ (~r1 − ~r2).

2In Ref. [64], B` was mistakenly referred to as the isothermal compressibility, instead of its inverse.
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i.e., ~r = ~x/R, B` = Bx(1 + ε) and φ = n
√
v/Bx gives,

∆F
kBTV ρ̄

= ln

(
ρ̄

ρ`

)
+
ρ` − ρ̄
ρ̄

+
Rd(Bx)2

vV

∫
d~r

[
ε

2
φ2 +

φ

2

(
1 +∇2

)2
φ− gφ

3

3
+
φ4

4

]
(8.53)

where g ≡ t/
√
vBx. Similar to the SH free energy functional the transition from a liquid (i.e., n =

constant) to a solid (n periodic) occurs roughly when ε changes sign. Since the field n is a conserved field
the thermodynamics are different from the SH model and the transition changes from being a second
order (in mean field theory [1, 94]) to first order as expected for a liquid solid transition. In this context
ε becomes negative as the temperature is lowered or as the density increases. To evaluate the properties
of this very simple model various equilibrium and non-equilibrium properties will be derived in the next
few sections.

8.4 Equilibrium Properties in a One Mode Approximation

To evaluate various properties of this model it is useful to analytically determine the minimum energy
states of the free energy functional in mean field theory. Assuming that the system is in a crystalline
state and the reference density (ρ̄) is the average value of the density, the functional form of a periodic

density can be written down in terms of the reciprocal lattice vectors, ~G, i.e.,

n =
∑
~G

η~G e
i ~G·~r + c.c. (8.54)

where c.c. is the complex conjugate and η~G represent the amplitudes of a given reciprocal lattice vector
mode. As discussed in section (5.1) these amplitudes can be interpreted as complex order parameters

of the crystal. In three dimensions, ~G can be written ~G = n1~q1 + n2~q2 + n3~q3, where (~q1, ~q2, ~q3) are
the principle reciprocal lattice vectors describing a specific crystalline symmetry, (n1, n2, n3) are integers
and the summation in Eq. (8.54) refers to a summation over all n1, n2 and n3. The convenience of this
description is that the amplitudes are constant in a perfectly periodic state. If the amplitudes are allowed
to vary in space and time then this description is quite useful for generating complex order parameter
models that describe multiple crystal orientations, elastic deformations, defects, etc. This was explored
in detail by Goldenfeld et al. [80] and touched upon in Sec. (5.2).

In the following sections the simplest approximation will be made for the equilibrium solid phase,
that of a perfect single crystal in a ‘one mode approximation’. For the purpose of this book a ‘one-mode
approximation’ will refer to an approximation in which the summation only includes (n1, n2, n3) values

that correspond to the lowest order (i.e., smallest) values of ~G needed to reconstruct a given crystal
symmetry. While this approximation cannot be used to describe the mean field equilibrium functional
forms for n quantitatively as in CDFT, it is reasonably accurate for the PFC model and exact in the
limit ε ∼ (B` − Bx)/Bx → 0. In the following sections this approximation will be used to derive the
phase diagram in one, two and three dimensions.

8.4.1 Three dimensions: BCC lattice

To evaluate the equilibrium states of the PFC model in three dimensions the free energy of various
crystalline symmetries must be compared. In a one mode approximation it turns out that a BCC
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symmetry minimizes the free energy functional. For a BCC crystal ~G can be written in terms of the
following set of principle reciprocal lattice vectors,

~q1 =
2π

a

(
x̂+ ŷ√

2

)
, ~q2 =

2π

a

(
x̂+ ẑ√

2

)
and ~q3 =

2π

a

(
ŷ + ẑ√

2

)
, (8.55)

where a is the lattice constant. The values of (n1, n2, n3) in Eq. (8.54) that correspond to a ‘one-mode
approximation’ are then (n1, n2, n3) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (0, 1,−1), and (−1, 0, 1). Each

of the corresponding ~G = n1~q1 + n2~q2 + n3~q3 vectors has magnitude, 2π/a. Substituting these reciprocal
lattice vectors into Eq. (8.54) and assuming all the amplitudes are equivalent, (i.e., η~G = φ/4, where the
factor of 4 is for convenience) gives,

n = φ [cos(qx) cos(qy) + cos(qx) cos(qz) + cos(qy) cos(qz)] , (8.56)

where q = 2π/(
√

2a). This functional form can now be used to calculate various equilibrium properties.
To determine the equilibrium states, the next step is to determine the values of φ and q that minimize

the dimensionless free energy difference, F , which is defined to be

F (q, φ) ≡ 1

a3

∫ a

0

dx

∫ a

0

dy

∫ a

0

dz

[
B`

2
n2 +

Bx

2
n
(
2∇2 +∇4

)
n− tn

3

3
+ v

n4

4

]
(8.57)

where for convenience the constant terms in Eq. (8.52) have been subtracted. Substitution of Eq. (8.56)
gives,

F (q, φ) =
3

8

[
B` − 4Bx

(
q2 − q4

)]
φ2 − t

4
φ3 +

135v

256
φ4. (8.58)

The value of q (and the lattice constant a) can now be obtained by minimizing with respect to q (i.e.,
dF/dq = 3Bx(−q + 2q3) = 0), which gives,

qeq = 1/
√

2 (8.59)

or a = 2π/q = 2π (in dimensionless units). Substitution of this expression into F gives,

F (qeq, φ) =
3

8
∆Bφ2 − t

4
φ3 +

135v

256
φ4. (8.60)

where ∆B ≡ B` −Bx. For illustrative purposes F (qeq, φ) is plotted as a function of φ in Fig. (8.8a) for
several values of ∆B to highlight the first order phase transition from a liquid (φ = 0) to solid (φ 6= 0)
state. The value of ∆B at which the transition occurs (i.e., when the two minima are equal) can be
obtained by first minimizing F with respect to φ, i.e., dF/dφ = 0, gives,

φeq =
4

45v

(
2t+

√
4t2 − 45v∆B

)
(8.61)

(note three solutions of dF/dφ = 0 exist, φ = 0 corresponds to the liquid state and φ = 4(2t −√
4t2 − 45v∆B)/45v an inflection point). Substituting this expression back into the free energy den-

sity, and solving the equation F (qeq, φeq) = 0, for ∆B gives the melting value, ∆Bls, since F = 0 is the
energy density of the liquid state. The solution is,

∆Bls = 32t2/(405v). (8.62)
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Figure 8.8: (a) Free energy density as a function of φ at three values of ∆B = B` − Bx with (t, v) =
(1/2, 1/3). The top, middle and bottom curves correspond to ∆B = ∆Bls+0.005,∆Bls and ∆Bls−0.005.
(b) Sketch of typical gas/liquid/solid phase diagram. As illustrated in this figure the parameter ∆B will
decrease when the density is increased or the temperature is decreased.

This calculation shows that a first order phase transition from a liquid to solid state occurs at ∆B =
∆BM and the order parameter for the transition is φ. From this point of view the “phase” field that is
usually introduced in traditional phase field models to describe liquid/solid transition is not an arbitrary
field introduced for convenience. As discussed in earlier chapters, this field is the amplitude of the number
density field. It is instructive to probe the physical significance of the parameter ∆BM . Intuitively one
expects that this parameter is related to temperature. To see this it is useful to substitute the definitions
of B` and Bx (i.e., B` = 1 + ρ̄Ĉ0 and Bx = ρ̄Ĉ2

2/4Ĉ4) into ∆B to obtain,

∆B = 1 + ρ̄ (Ĉ0 − Ĉ2
2/4Ĉ4). (8.63)

Next noting that the maximum of Ĉ occurs when k2 = Ĉ2/2Ĉ4 or when Ĉ∗ = −Ĉ0 + Ĉ2
2/4Ĉ4 (see Fig.

(8.7)) gives,
∆B = 1− ρ̄ Ĉ∗ = 1/S(k∗). (8.64)

where S(k∗) is the maximum of the structure factor. Thus as the peak in S(k) increases (which is
increasing the nearest neighbour correlations) a transition to a crystalline state is triggered. Additionally
as the average number density (ρ̄) increases ∆B decreases and a transition to the crystalline state occurs
as expected. Recalling that Ĉ∗ is the peak in Ĉ along the liquid coexistence line, and noting that it
is roughly constant along this line indicates that ∆B decreases with increasing density or decreasing
temperature as illustrated in Fig. (8.8b). Thus changing ∆B is equivalent to changing the temperature
or the average density.

In the preceding calculations it was assumed that there was no bulk density difference between the
periodic and uniform states, and we expanded n around n̄ = 0. However, in nearly all cases of interest,
there exists a bulk density change between the liquid and crystalline phases. In order to account for
this possibility (and to derive the liquid/crystal coexistence lines) a specific ρ̄ must be chosen to expand
around. The most convenient (and consistent) value to expand around is the density along the liquid
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coexistence line, i.e., ρ̄ = ρ`. In this instance the constant terms in Eq. (8.51) disappear and the
coefficients are evaluated at ρ`, i.e., B` ≡ 1 + ρ`Ĉ0 and Bx = ρ`Ĉ

2
2/4Ĉ4. As will be seen the transition

to the crystalline phase occurs as the average value of n (which is now not zero) is increased consistent
with the earlier discussion. To determine the equilibrium states, for BCC symmetry, no must be added
to Eq. (8.56), i.e.,

n = no + φ [cos(qx) cos(qy) + cos(qx) cos(qz) + cos(qy) cos(qz)] , (8.65)

Substituting this expression into Eq. (8.57) and minimizing with respect to q gives qeq = 1/
√

2 as before
and,

F (qeq, φ, no) =
B`

2
n2
o − t

n3
o

3
+ v

n4
o

4
+

3

8
[∆B − no(2t− 3vno)]φ

2 − 1

4
[t− 3vno]φ

3 +
135v

256
φ4. (8.66)

For illustrative purposes this free energy is plotted as a function of φ in Fig. (8.9). For the parameters
used in this figure the free energy has two minima, one corresponding to liquid at (no, φ) = (0, 0) and
one for a crystal at (no, φ) ≈ (0.03811, 0.3870). 3

Figure 8.9: Free energy as a function of no and φ as described by Eq. (8.60) for B` = 1, Bx = 0.925, and
(t, v) = (1/2, 1/3).

The coexisting equilibrium densities of the solid and liquid phases can be found by first minimizing
F with respect to φ as before to obtain,

φbcc =
4

45v

(
2t− 6vno +

√
4t2 − 45v∆B + 33vno(2t− 3vno)

)
(8.67)

Equation (8.67) is then substituted into Eq. (8.66) to obtain the free energy of the crystal as a function
of no. To obtain the equilibrium coexistence lines this free energy must be compared with the liquid state

3As an aside the reader may notice that the coefficient of φ2 contains the term −no(2t− 3vno). The implication is that
for large no this coefficient is positive which in term implies this term favors a liquid state. This unphysical result is simply
a consequence of the small n expansion. If done more carefully it can be shown that these terms are just the lowest order
expansion of 1/(1 + no)− 1 which always decreases as no increases.
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free energy (i.e., Eq. (8.66) at φ = 0),

F liq =
B`

2
n2
o − t

n3
o

3
+ v

n4
o

4
. (8.68)

A sample plot of the liquid and crystal free energy densities is shown in Fig. (8.10a) at B` = 1 and
Bx = 0.925. The equilibrium liquid (n`) and crystal (nx) densities can be obtained in the usual manner,
i.e., by the common tangent rule (see Fig. (8.10a)) or by the Maxwell equal area construction rule (see
Fig. (8.10b)). To perform the common tangent construction, it is useful to expand the solid and liquid

Figure 8.10: Comparison of liquid and crystal free energy densities (a) and chemical potentials (b) for
B` = 1, Bx = 0.925 and (t, v) = (1/2, 1/3). In (a) the dashed line is the common tangent that determines
the equilibrium liquid and crystal densities, n` and nx. In (b) the dashed line corresponds to the chemical
potential at which the upper triangle has the same area as the lower triangle.

free energies about the density where the liquid and crystal free energies are equal. This density is given
by

n∗ = (t− 3
√

1545t2 − 4635v∆B/103)/3v. (8.69)

Repeating these calculations for various values of B` and Bx leads to liquid/crystal coexistence lines
show in Fig. (8.11) for three values of B` as a function of ∆B. As can be seen in these figures increasing
B` and Bx, with ∆B fixed, decreases the miscibility gap (i.e., the density difference between the liquid
and solid phases). As will be shown in Section (8.4.4) elastic moduli tend to increase with increasing Bx.
This has the effect of reducing the liquid/crystal interfacial thicknesses.

The preceding calculations implicitly assume small n (and small no). For small no the relevant phases
are the liquid and BCC phases. However for larger positive values of no other structures minimize the
free energy density, such as a two-dimensional triangular lattice of rods or at even larger values of no a
one-dimensional ordering of planes or stripes. Thus to obtain the complete phase diagram between all
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Figure 8.11: Sample liquid/crystal coexistence lines. In all figures the lines on the left (right) are the
liquid (crystal) coexistence lines. The value of B` in a), b) and c) is 0.1, 1.0 and 10.0, respectively.

phases, the free energy for an array of triangular rods and striped planes must be evaluated. A similar
procedure to that used in this subsection can be then used to construct coexistence lines between these
various phases. The next two subsections work through the steps required to calculate the free energy of
rods and stripe phases in a simple one-mode approximation.

8.4.2 Two dimensions: triangular lattice (rods in 3D)

It is straightforward to extend the calculations in the preceding section to a two dimensional system with
triangular symmetry. For a triangular system the principle reciprocal lattice vector are

~q1 =
4π√
3 a

(√
3

2
x̂− 1

2
ŷ

)
and ~q2 =

4π√
3 a

(ŷ) , (8.70)

which assumes real space lattice vectors ~a1 = a(1, 0) and ~a2 = a(1/2,
√

3/2). In a ‘one-mode’ approxi-

mation the lowest order reciprocal lattice vectors (~G = n1~q1 +n2~q2) correspond to (n1, n2) = (1, 0), (0, 1)
and (−1,−1). Assuming the amplitudes (i.e., η~G) are constant this lowest order set of vectors leads to
the following approximation for n,

n = no + φ

(
1

2
cos

(
2q√

3
y

)
+ cos(qx) cos

(
q√
3
y

))
, (8.71)

where q = 2π/a and −η1 = −η2 = η3 = φ/4. Substitution of this form into the free energy and minimizing
with respect to q gives qeq =

√
3/2 and

F (qeq, φ, no) =
B`

2
n2
o − t

n3
o

3
+ v

n4
o

4
+

3

16
[∆B − no(2t− 3vno)]φ

2 − 1

16
[t− 3vno]φ

3 +
45v

512
φ4, (8.72)

where it is recalled that ∆B = Bl −Bx. Minimizing F with respect to φ gives,

φtri =
4

15v

(
t− 3vno +

√
t2 − 15v∆B + 12nov(2t− 3vno)

)
(8.73)
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The density at which the liquid has the same free energy as the BCC phase is given by

no = n∗ = (t− 3
√

185t2 − 555v∆B/37)/3v (8.74)

A two dimensional phase diagram of the liquid phase with the triangular phase is obtained by comparing
the minimized free energy of the triangular (Eq. (8.72) and liquid (Eq. (8.68)) phases. An example of
such a phase coexistence is shown in Fig. (8.12). As noted in the last section different solutions arise for

Figure 8.12: Sample phase diagram for a two dimensional system for B` = 1. The labels indicate the
equilibrium phases and the unlabeled regions are coexistence regions.

large values of no. Increasing no further gives rise to a striped phase and the coexistence of the stripes
with the triangular phase should then be considered.

8.4.3 One dimension: planes

In one dimension the one mode approximation for n is simply

n = no + φ cos(qx) (8.75)

Substitution of this form into the free energy and minimizing with respect to q gives qeq = 1 and

F (qeq, φ, no) =
B`

2
n2
o − t

n3
o

3
+ v

n4
o

4
+

1

4
[∆B − no(2t− 3vno)]φ

2 + v
3

32
φ4. (8.76)

Minimizing Eq. (8.76) with respect to φ gives,

φeq = 2
√
−3v∆B + 3vno(2t− 3vno)/3v (8.77)
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The liquid has the same free energy as in the BCC case and the density at which the liquid and solid free
energies are equal occurs when,

n∗ = (t−
√
t2 − 3v∆B)/3v (8.78)

When the free energy of this state is compared with the 2D triangular rods and 3D BCC phases it is
found that the 1d planes are the lowest energy state for large values of no and a coexistence between
triangular rods and stripes can occur. This coexistence is also shown in Fig. (8.12). The complete phase
diagram that includes all phases studied is shown in Fig. (8.13). A similar phase diagram of the original
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Figure 8.13: Sample phase diagram for a three dimensional system for B` = 1. The labels indicate the
equilibrium phases and the unlabeled regions are coexistence regions. The liquidus line is shown in blue.
Also shown is the density n∗.

SH parameter set can be found in the thesis of Wu [212].

8.4.4 Elastic Constants of PFC Model

One of the motivations for studying a phase field model that resolves the atomic scale is that it natural
contains elastic energy. In general the elastic energy contained in the free energy functional can be
evaluated by considering an expansion around an unstrained state, i.e.,

n(~r) = neq(~r + ~u) (8.79)

where ~u is a displacement vector and neq is an unstrained equilibrium state. The free energy can now be
formally expanded in the strain tensor, Uij = (∂ui/∂xj + ∂uj/∂xi)/2, i.e,

F (neq(~r + ~u)) =
1

V

∫
V

d~r

[
feq +

(
∂f

∂Uij

)
eq

Uij +
1

2

(
∂2f

∂Ukl∂Uij

)
eq

Ukl Uij + · · ·

]
(8.80)
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where the Einstein summation convention over like indices has been adopted and f for the example free
energy given in Eq. (8.51) is f ≡ B`n2/2 + Bx/2n(2∇2 +∇4)n − n3/6 + n4/12 . By definition feq is a
minimum at neq thus (

∂f

∂Uij

)
eq

= 0. (8.81)

This leads to the following result,

∆F =
1

V

∫
V

d~r

[
1

2

(
∂2f

∂Ukl∂Uij

)
eq

Ukl Uij + · · ·

]
(8.82)

where ∆F ≡ F (neq(~r + ~u)) − F (neq(~r)) is the increase in energy due to the deformation. This implies
that the elastic constants can be formally written,

Kijkl =
1

V

∫
V

d~r

(
∂2f

∂Uij∂Ukl

)
eq

. (8.83)

and in turn that the elastic constants will automatically have the symmetry of the equilibrium state.
To evaluate the coefficients for a specific crystalline system the most convenient representation is the
amplitude expansion, i.e, Eq. (8.54). In this representation deformations of lattice are represented by

η~G → ηeq exp(i ~G · ~u), where ~u is the displacement vector. Details of these calculations will be given in
Section (8.6).

8.5 PFC Dynamics

The dynamics of the dimensionless number density difference, n, is assumed to be dissipative and driven
to minimize the free energy functional. Since n is a conserved field one would expect the dynamics to
obey the following equation of motion

∂n

∂t
= Γ∇2 δF

δn
+ η = Γ∇2

[(
B` +Bx

(
2∇2 +∇4

))
n− tn2 + vn3

]
+ η. (8.84)

A more detailed derivation of this equation is discussed in Chaikin and Lubensky [45] and Khachaturyan
[118]. In a detailed treatment of solid hydrodynamics, Majaniemi and Grant [148] have shown that the
long-time and long wavelength limit of density dynamics can be fairly accurately accurately described by
the equation

∂2ρ

∂t2
+ β

∂ρ

∂t
= ~∇ ·

(
ρ~∇δF

δρ

)
+ ζ, (8.85)

where β is a friction coefficient and ζ is a Guassian random noise term satisfying the usual fluctuation
dissipation theorem. This form was first proposed by Stefanovic, Haataja and Provatas [189]. The form
without the inertial term (second order time derivative) was proposed by Evans [73] and Archer [13].
Equation (8.85) can be expressed in terms of the reduced density, n, as

∂2n

∂t2
+ β

∂n

∂t
=

1

kBTV ρ2
`

~∇ ·
(

(1 + n)~∇
[(
B` +Bx

(
2∇2 +∇4

))
n− tn2 + vn3

])
+

ζ

ρ`
, (8.86)
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where, in this instance, use of this equation implies that the coefficients of the PFC free energy take on
their dimensional form. Simplifying for small n, Eq.(8.86) becomes

1

β

∂2n

∂t2
+
∂n

∂t
≈ Γ∇2

[(
B` +Bx

(
2∇2 +∇4

))
n− tn2 + vn3

]
+ η (8.87)

where

Γ ≡ 1

β kBTV ρ2
`

, (8.88)

〈η〉 = 0 and 〈η(~r1, t1)η(~r2, t2)〉 = −2kBTρl∇2δ(~r1 − ~r2)δ(t1 − t2).
Most of the calculations presented in next sections only consider the limit in which β →∞, i.e.,

∂n

∂t
≈ Γ∇2

[(
B` +Bx

(
2∇2 +∇4

))
n− tn2 + vn3

]
+ η (8.89)

A full treatment of the computational subtleties of the extra second order time derivative in Eq. (8.87)
is beyond the scope of this book.

8.5.1 Vacancy Diffusion

Consider a perfect lattice with one ‘atom’ taken out. On atomic length and time scales the vacancy
created by the missing atom will jump from site to site and eventually diffuse throughout the lattice. In
the PFC model the density at the vacancy slowly fills in and the density at neighbouring sites slowly
decreases as the vacancy diffuses throughout the lattice. A simulation of the PFC for this phenomena
is shown in Fig. (8.14). To highlight the diffusion of the vacancy, the configurations shown have been

Figure 8.14: Vacancy diffusion. In this figure the grey scale corresponds to ρ(x, y, t) − ρeq(x, y), where
ρ(x, y, 0) corresponded to ρeq(x, y) with one ‘atom’ missing.

subtracted from a perfect lattice.
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To determine the time scales for vacancy diffusion it is useful to perform a Floquet analysis or a
linear stability analysis around a periodic state (as was done for the Swift-Hohenberg Equation). The
two dimensional equilibrium state can be written in the usual manner, i.e.,

neq = no +
∑

ηje
i ~Gj ·~r + c.c. (8.90)

where ~Gj are the reciprocal lattice vectors for the equilibrium state and ηj is a complex amplitude
associated with wave mode j. The field n is now perturbed around an equilibrium crystal phase (neq),
such that n = neq + δn, and in turn the PFC model to order δn becomes,

∂δn

∂t
= Γ∇2

[
B` +Bx

(
2∇2 +∇4

)
− 2tneq + 3vn2

eq

]
δn. (8.91)

The perturbation can be written as,

δn =
∑
j

Bj(t)e
i(~Gj+~Q)·~r + c.c. (8.92)

It turns out that the largest eigenvalue can be obtained by keeping the j = 0 term, i.e., δn = B0e
i ~Q·~r+c.c..

Substitution of δn into Eq. (8.91) and averaging over the unit cell gives

dB0

dt
= −ΓQ2

(
B` − 2tno + 3vn2

o + 3v
∑
|ηj |2 +Bx(−2Q2 +Q4)

)
B0

≈ −ΓQ2
(
B` − 2tno + 3vn2

o + 3v
∑
|ηj |2

)
B0, (8.93)

where a one mode approximation was assumed for the amplitudes and a small Q expansion was made to
arrive at the last line. Since a diffusion equation has the form dc/dt = Dv∇2c (or dc/dt = −DvQ

2c in
fourier space), the diffusion constant can be immediately written down and is

Dv = Γ
(
B` − 2tno + 3vn2

o + 3v
∑
|ηj |2

)
, (8.94)

For a BCC state in a one mode approximation
∑
|ηj |2 = 6|η1|2 = 3φ2

bcc/8, where φbcc is given in Eq.
(8.67). Similarly for the two dimensional triangular state

∑
|ηj |2 = 3|η1|2 = 3φ2

tri/16, where φtri is given
in Eq. (8.73).

For a comparison with molecular dynamics simulations it is useful to consider the number of time
steps needed to simulate some characteristic scale such as the time needed for a vacancy to diffuse one
lattice space, i.e.,

τD = a2/Dv. (8.95)

Numerically it takes roughly 500 to 1000 time steps to simulate one diffusion time using the PFC model.
In MD simulations the time step is roughly a femto second (10−15s). In the table below the number of
time steps needed to simulate one diffusion time in MD simulations of Gold and Copper is shown for
several temperatures. The number of time steps varies from 109 to 1011 implying that PFC is from 106

to 108 times faster. While this is a great advantage (and in fact the reason for using this approach) it is
important to note that the dynamics are inappropriate in some instances. For example in brittle fracture,
cracks tips move at velocities similar to the speed of sound, clearly much faster than diffusive time scales.
In constrast at low temperatures the vacancy diffusion time may be years or decades, many times slower
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than the time scale for a particular experimental measurement or material process. Several extension of
to the dynamics have been conducted to address both issues by adding higher order time derivatives in
the former case [189] and by introducing an energy cost for vacancies to dissapper [48]. In addition in
a study of solidification in collodial systems other dynamical forms that are more faithful to dynamic
density functional theory were examined [3].

Material Temperature Diffusion time # MD steps
Copper 650oC 0.20 ms ∼ 1011

(Tmelt = 1083oC) 850oC 2.51 µs ∼ 109

1030oC 0.23 µs ∼ 108

Gold 800oC 0.26 ms ∼ 1011

(Tmelt = 1063oC) 900oC 33.2 µs ∼ 1010

1020oC 5.53 µs ∼ 109

(8.96)

8.6 Multi-scale Modeling: Amplitude Expansions (Optional)

In Section (8.4) the dimensionless number density field was expanded in terms of the amplitudes (or
complex order parameters) of the periodic structure of interest (i.e., BCC in Section (8.4.1) and hexagonal
in Section (8.4.2)). The calculations performed in those sections assume that the amplitude of each mode
was constant (e.g., |η~G(~r)| = φ/4). This approximation is quite reasonable in an equilibrium state and
can be exploited to calculate phase diagrams and elastic constants. However, much more information
can be retained if the amplitudes are allowed to vary in both space and time. As studied previously,
liquid/solid interfaces can be described by an scalar amplitude (or order parameter) that is finite in the
solid phase and decreases continuously to zero in the liquid phase as depicted in Fig. (8.15). Similarly a
dislocation can be modeled by a rapid change in the amplitude.

Figure 8.15: Schematic of liquid solid interface. In this figure the solid line corresponds to the number
density profile and the dashed line to the amplitude of this profile.

A simple change in the magnitude of a scalar amplitude does not, however, capture the local defor-
mations in the lattice that give rise to long range elastic fields associated with dislocations. In traditional
continuum elasticity theory, this lattice distortion is represented by a displacement field (~u) that describes
the distance an atom is from some ideal equilibrium lattice position. In the amplitude description this
displacement can be reconstructed by allowing the amplitudes to be complex. Complex numbers can be
written ∼ φ eiθ, where the spatial dependence of the phase (θ = ~G · ~u) can allow for local displacements
as will be highlighted in the next few pages.
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A key question to be addressed is how can equations of motion for the complex amplitudes be system-
atically constructed? For the PFC model, Goldenfeld et al. [80, 81] have published a number of papers
that discuss various methods (so-called “quick and dirty”, renormalization group and multiple scales
analysis) for answering this question. While the mathematics behind these calculations can be lengthy,
the basic physical assumptions and ideas underlying these calculations is relatively straightforward. To
begin the calculations the number density field is represented in the usual fashion, i.e.,

n =
∑
~G

(
η~G exp

[
i ~G · ~r

]
+ η∗~G exp

[
−i ~G · ~r

])
(8.97)

where η~G is a complex variable that is assumed to vary on length scales much larger that the density
field itself as depicted in Fig. (8.15). Next consider substituting Eq. (8.97) into the PFC model (Eq.

(8.89)), multiplying both sides of the resulting equation by exp[−i ~G · ~r] and integrating over a unit cell.
Schematically this is depicted in one dimension as∫ x+a

x

dx e−iGx
∂n

∂t
= · · · . (8.98)

This integration can only be performed if it is assumed that η~G is constant over the integration range (i.e.,
from x to x + a). This is the essential approximation that assumes the existence of two well separated
length scales; a “fast” length scale associated with rapid variations on the atomic scales (i.e., a in Fig.
(8.15)) and a “slow” length scale associated with variations of the amplitude around interfaces (i.e., W
in Fig. (8.15)) and dislocations. In some sense this multiple-scales approximation (W >> a) can be
thought of as the ‘phase field limit’, since traditional phase field models implicitly assume interfaces are
much larger than atomic spacing, as discussed in previous chapters. For the PFC model this limit is
equivalent to the limit in which (B`0 −Bx0 )/Bx0 (or ε in the Swift-Hohenberg equation) goes to zero. For
a detailed discussion of the various formal perturbation theories dealing with this issues, the reader is
referred to references [56, 80, 82, 81].

Despite the complexities of constructing a formal perturbation theory to justify multiple-scales expan-
sion it is relatively straightforward to derive equations for the amplitudes that incorporates the essential
physics of crystallization, elasticity and plasticity. Considering that the PFC equation is itself a relatively
poor approximation to classical DFT, it is perhaps not that important to develop amplitude models that
are accurate descriptions of the PFC model. From this point of view, equations of motion for the am-
plitudes can be thought of as fundamentally motivated phenomenological models in themselves. In the
following few pages a simple derivation of amplitude equations will be presented.

When Eq. (8.97) is directly substituted in Eq. (8.89) the following expression is obtained,∑
j

ei
~Gj ·~r ∂ηj

∂t
+ c.c. =

∑
j

ei
~Gj ·~r Lj

[
B` +Bx(2Lj + L2

j )
]
ηj + c.c.

− t
∑
j,k

[
ei(

~Gj+~Gk)·~rLi+j ηjηk + ei(−
~Gj+~Gk)·~rL−i+j η∗j ηk + c.c.

]
+ v

∑
j,k,l

[
ei(

~Gj+~Gk+~Gl)·~rLj+k+l ηjηkηl + ei(
~Gj+~Gk−~Gl)·~rLj+k−l ηjηkη∗l

+ei(
~Gj−~Gk+~Gl)·~rLj−k+l ηjη

∗
kηl + ei(−

~Gj+~Gk+~Gl)·~rL−j+k+l η
∗
j ηkηl

+c.c.] (8.99)

171



where L is an operator such that Lj ≡ −G2
j + 2i ~Gj · ~∇ + ∇2 and the notation is such that Lj+k ≡

−|~Gj + ~Gk|2 + 2i(~Gj + ~Gk) · ~∇+∇2 or Lj−k ≡ −|~Gj − ~Gk|2 + 2i(~Gj − ~Gk) · ~∇+∇2, etc.. For convenience
the subscript j has been used to represent a given reciprocal lattice vector. It will be useful in what follows
to note that the operator 2Lj +L2

j that appears in the linear term reduces in a one-mode approximation
to

2Lj + L2
j = (−1 + Gj)(2− 1 + Gj) = −1 + G2

j (8.100)

where G ≡ ∇2 +2i ~Gj · ~∇ and in dimensionless units |~Gj | = 1. Multiplying Eq. (8.99) by
∫
d~r exp[−i ~Gm ·~r]

and integrating over one unit cell in the limit W >> a gives,

∂ηm
∂t

= (−1 + Gm)

[∆B +BxG2
m

]
ηm − t

∑
j,k

[
δm,j+k ηjηk + δm,−j+k η

∗
j ηk + c.c.

]

+ v
∑
j,k,l

[
δm,j+k+l ηjηkηl + δm,j+k−l ηjηkη

∗
l + δm,j−k+l ηjη

∗
kηl + δm,j−k+l η

∗
j ηkηl+c.c.

](8.101)

where, ∆B ≡ B` − Bx and the delta functions in the above expresion are actually Kronecker delta
functions for reciprocal lattice vectors, i.e.,

δm,j+k+l ≡
{

0 ~Gm 6= ~Gj + ~Gk + ~Gl
1 ~Gm = ~Gj + ~Gk + ~Gl

(8.102)

and δ∗m,j = δm,−j , etc.. To continue the discussion a set of reciprocal lattice vectors must be specified.
In the following several subsections reciprocal lattice vectors in one, two and three dimensional cases are
considered.

8.6.1 One dimension

In one dimension it is sufficient to make ~G = 1 (in dimensionless units), i.e.,

n = η(x, t)eix + η∗(x, t)e−ix, (8.103)

and thus Eq. (8.101) reduces to

∂η

∂t
= (−1 + G)

δF1d

δη∗
= (−1 + G)

{[
∆B +BxG2

]
η + 3v|η|2η

}
(8.104)

where G ≡ ∂2
x + 2i∂x, and

F1d =

∫
dx
[
∆B|η|2 +Bx|Gη|2 + 3v|η|4/2

]
. (8.105)

To gain more insight into this result it is useful to consider a small deformation, i.e., ρ(~r)→ ρ(~r+ ~u)
or in terms of the amplitude,

η = φ exp[i ~G · ~u]. (8.106)
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Substituting this expression into Eq. (8.105) and expanding to the lowest order gradients in φ and u
gives,

F1d = 2

∫
dx

[
∆B

2
φ2 +

3v

4
φ4 + 2Bx

∣∣∣∣∂φ∂x
∣∣∣∣2 + 2Bxφ2 U2

xx + · · ·

]
(8.107)

where Uxx is the linear strain tensor (i.e., Uxx = ∂ux/∂x) and “· · ·” represents higher order derivatives.
The result is quite interesting, the first three terms are identical in form to Model A and the last term
is just the linear elastic energy. Essentially this model describes a phase transition with elasticity. The
elastic constant is proportional to φ so that elastic energy self-consistently disappears in the liquid state
which is defined to be φ = 0.

Before continuing to higher dimensions it should be noted that the approximation given in Eq. (8.103)
does not allow for the average value of n to vary in space. This approximation does not allow for
coexistence between liquid and crystal phases over a range of average densities, i.e., there is no miscibility
gap or volume expansion upon melting. This feature can be taken into account as shown in one-dimensions
by Matthews and Cox [150] for the conserved SH equation and by Yeon et al. [217] for the PFC model
in two and three dimensions. For these calculations the field n is written,

n = no(x, t) + η(x, t)eix + η∗(x, t)e−ix, (8.108)

where now both η and no are “slow” variables in space, i.e., it is assumed that they both vary on length
scales much larger than the atomic spacing. Substitution of this expression into Eq. (8.89) and integrating
over e−iqox gives;

∂η

∂t
= (−1 + G)

[
B` +BxG2 − 2tno + 3vn2

o + 3v|η|2
]
η = (−1 + G)

δF ′

δη∗
(8.109)

and over 1 gives 4

∂no
∂t

= Γ∇2
[(
B` +Bx(2∇2 +∇4) + 6v|η|2

)
no − tn2

o + vn3
o − 2t|η|2

]
= ∇2 δF

′

δno
(8.110)

The effective free energy functional F ′ appearing in Eqs. (8.109) and (8.110) is given by

F ′ =

∫
dx

[(
∆B|η|2 +Bx|Gη|2 +

3v

2
|η|4
)
− no(2t− 3vno)|η|2 +

(
no
Gno

2
no − t

n3
o

3
+ v

n4
o

4

)]
(8.111)

and Gno ≡ B` +Bx(2∇2 +∇4). In long wavelength limit it is possible to replace −1 + G with −1 in Eq.
(8.109) and Gno by B` as is discussed in some detail by Yeon et al. [217].

8.6.2 Two Dimensions

In two dimensions the equilibrium state of the PFC model is triangular and the principle reciprocal lattice
are vectors are

~q1 = −1

2

(√
3x̂+ ŷ

)
; ~q2 = ŷ (8.112)

4Think of this like eiGx where G = 0 is the wave vector associated with the density change, which varies on long
wavelengths.
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In a one mode approximation all the reciprocal lattice vectors (i.e., ~G = l~q1 +m~q2) with length one must
be included. The full one-mode set then corresponds to (l,m) = (1, 0), (0, 1), (−1,−1) are depicted in
Fig. (8.16). For this two dimensional system the atomic density field n becomes,

Figure 8.16: Reciprocal lattices vectors for one mode approximation to triangular lattice.

n =

j=3∑
j=1

ηj(~r, t)e
i ~Gj ·~r +

j=3∑
j=1

η∗j (~r, t)e−i
~Gj ·~r. (8.113)

Repeating the steps outlined in the preceding section then gives,

∂ηj
∂t

= (Gj − 1)
δF2d

δη∗j
= (Gj − 1)

(∆B +Bx(Gj)2 + 3v
(
A2 − |ηj |2

))
ηj − 2t

∏
i 6=j

η∗i

 (8.114)

where, Gj ≡ ∇2 + 2i ~Gj · ~∇ and

F2d =

∫
d~r

∆B

2
A2 +

3v

4
A4 +

3∑
j=1

{
Bx|Gjηj |2 −

3v

2
|ηj |4

}
− 2t

 3∏
j=1

ηj + c.c.

 (8.115)

with the representation A2 ≡
∑
i |ηi|2. Again, it turns out that the approximation (Gj − 1)→ −1 can be

made in Eq. (8.114)
As in the one dimensional case, it is interesting to consider a small deformation, which is represented

in the complex amplitude by ηj ≡ φ exp(i ~Gj · ~u). Substitution of this expression in Eq. (8.114) gives in
the long wavelength limit,

F2d ≈
∫
d~r

[
3∆Bφ2 − 4tφ3 +

45

2
vφ4 + 6Bx|~∇φ|2 + 3Bx

{
2∑
i=1

3

2
U2
ii + UxxUyy + 2U2

xy

}
φ2

]
(8.116)

where Uij ≡ (∂jui + ∂iuj)/2 is the linear strain tensor. The first three terms in F2d describe a double-
well potential with an odd term to generate a tilt between the wells. This leads to a first order phase
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transition from a liquid state (φ = 0) at large ∆B to a crystalline phase (φ 6= 0) at low or negative ∆B.
This is precisely analogous to the phase filed free energy functional that was discussed in section (2.2.5).
The fourth term is the usual surface energy contribution that appears in nearly all traditional phase field
models. The last set of terms are the elastic energy (which as before is negligible in the liquid state).
Written in this form the independent elastic constant can be immediately read off (see for example
reference [135], pages 32 to 35) and are C11 = 9Bxφ2, C12 = C44 = C11/3. As in the one dimensional
case, this calculation can be extended to include a miscibility gap in the density field [217].

8.6.3 Three Dimensions

In three dimensions the equilibrium crystal state of the PFC model has BCC symmetry, for small un-
dercooling. For large undercooling FCC and HCP symmetries are possible [107]. For BCC crystals the
principle reciprocal lattice vectors are

~q1 = (x̂+ ŷ)/
√

2 ; ~q2 = (x̂+ ẑ)
√

2 ; ~q3 = (ŷ + ẑ)
√

2, (8.117)

where ~qi are in units of q0 = 2π/a. In a one mode approximation the lowest order reciprocal lattice vectors

(~G = l~q1 +m~q2 +n~q3) correspond to (l,m, n) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (0, 1,−1), (−1, 0, 1) or

~G1 = (x̂+ ŷ)/
√

2, , ~G2 = (x̂+ ẑ)/
√

2, , ~G3 = (ŷ + ẑ)/
√

2,

~G4 = (ŷ − ẑ)/
√

2, , ~G5 = (x̂− ŷ)/
√

2, , ~G6 = (ẑ − x̂)/
√

2. (8.118)

Substitution of n into the equation of motion and integrating as before then gives,

∂η1

∂t
=(G1 − 1)

[(
∆B +BxG2

1 + 3v(A2 − |η1|2)
)
η1 − 2t(η3η

∗
6 + η2η4) + 6v(η3η4η5 + η2η

∗
5η
∗
6)
]
(8.119)

∂η4

∂t
=(G4 − 1)

[(
∆B +BxG2

4 + 3v(A2 − |η4|2)
)
η4 − 2t(η∗5η

∗
6 + η1η

∗
2) + 6v(η1η

∗
3η
∗
5 + η3η

∗
2η
∗
6)
]
(8.120)

where the equations of motion for η2 and η3 are obtained by cyclic permutations on the groups (1,2,3)
and (4,5,6) from Eq. (8.119). Similarly equations for η5 and η6 can be obtained by cyclic permutations
of Eq. (8.120). As with the one and two dimensional cases these equations can be written in the form,

∂ηj
∂t

= (Gj − 1)
δF3d

δη∗j
(8.121)

where

F3d =

∫
d~r

∆B

2
A2 +

3v

4
A4 +

3∑
j=1

{
Bx|Gjηj |2 −

3v

2
|ηj |4

}
+6v (η1η

∗
3η
∗
4η
∗
5 + η2η

∗
1η
∗
5η
∗
6 + η3η

∗
2η
∗
6η
∗
4 + C.C.)

−2t (η∗1η2η4 + η∗2η3η5 + η∗3η1η6 + C.C.)] (8.122)

In the small deformation and long wavelength limit this reduces to

F3d ≈
∫
d~r
[
6∆Bφ2 − 16tφ3 + 135vφ4 + 8Bx|~∇φ|2

+4Bx


 3∑
i=1

U2
ii +

1

2

∑
j 6=i

UiiUjj

+ 2

4∑
i=1

U2
ii

φ2

 . (8.123)
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This free energy is essentially equivalent to the two dimensional case except for the coefficients. The
three elastic constants for this model are then C11 = 8Bxφ2, C12 = C44 = C11/2 as expected for a BCC
lattice.

8.6.4 Rotational Invariance

While all the equations derived for the amplitudes are rotationally invariant, trouble will arise if two
angles are used to describe the same crystal orientation. For a better understanding of this it is useful
to consider a simple rotation of the two dimensional system as depicted in Fig. (8.17). To describe this

Figure 8.17: Reciprocal lattices vectors for one mode approximation to triangular lattice under rotation.

rotation the amplitudes would be transformed as,

ηj → ηj exp(i δ ~Gj · ~r), (8.124)

where δ ~Gj ≡ ~G′j − ~Gj and ~G′j = (Gxj cos(θ)−Gyj sin(θ))x̂+ (Gxj sin(θ) +Gyj cos(θ))ŷ. When Eq.(8.124) is
substituted into Eq. (8.115) it is easy to show that all dependence on θ disappears. As expected the free
energy is invariant under rotation. However there is a problem when two ‘identical crystals’ impinge on
one another. Consider for example a rotation of π/6 for the two dimensional reciprocal lattice set which

turns ~G′1 → −~G2, η1 → η∗2 and similarly for other modes. Under the rotation the exact same crystal
structure is represented as for θ = 0. However, for θ = 0 the amplitudes are constant, while for θ = π/6
the amplitudes are oscillating in space according to Eq. (8.124). If these two crystal come into contact a
domain wall will forms between them since the amplitudes are not constant across the interface. Clearly
a domain wall between two identical crystals is unphysical. Thus when using the amplitude expansions
for the two dimensional case the condition −π/6 < θ < π/6 must be maintained. Similar care must be
taken when considering the three dimensional BCC amplitude equations. Curiously, this limitation is
similar to that encountered in all multi-phase field models where separate scalar order parameters are
associated with each rotation.
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8.7 Parameter fitting

The approximations used in the derivation of PFC from CDFT are extremely crude and lead to a model
that is not a good approximation of classical DFT. From a computational point of view this is a good thing
since CDFT solutions for n are sharply peaked at each lattice sites and may require on the order of ∼ 100d

mesh points (where d is dimension) to resolve. In contrast, solutions of the PFC are much smoother and
require on the order of∼ 10d mesh points which leads to a significant computational saving. Unfortunately
the PFC model as derived from CDFT (i.e., Eq. 8.51 with t = 1/2 and v = 1/3) gives poor predictions
for many physical quantities. This leads to an important questions: Can parameters for the PFC model
be chosen such that n is smooth and reasonable predictions are made for key physical quantities such
as the liquid/solid surface energy and anisotropy, liquid and solid elastic moduli, magnitude of volume
expansion upon melting, etc..

At the time of writing this text, the only metallic system that has been studied in some detail is Fe.
The first study was initiated by Wu and Karma [213]. In their study the authors fit the width, height
and position of the first peak in Ĉ(k) to predict B`, Bx and R (although in a different notation) and
the parameters t and v were chosen to match the amplitude (φ) of the density fluctuations of molecular
dynamics studies and to ensure the liquid and solid phases have the same energy at coexistence. This
scheme did quite well to predict the liquid/solid surface energy and anisotropy. Unfortunately predictions
for the elastic moduli, volume expansion upon melting and the isothermal compressibility of the liquid
phase were not very accurate. The main difficulty lies in simultaneously fitting the first peak in Ĉk and
Ĉ0 using only three parameters. In a later study Jaatinen et al. [106] added one more parameter to the
PFC free energy so that both the first peak and k = 0 mode of Ĉk were fit reasonably well. By adding
this one extra parameter the models predictions for the volume expansion of upon melting, the bulk
moduli of liquid and solid phases and as before the liquid/solid surface energy and anisotropy, closely
match experimental numbers. Whether the general procedure outlined in this study will work for other
metals/materials needs to be examined in more detail.

In another study, an examination of the velocity of solidifying front in a colloidal system was examined
by van Teeffeen et al. [3]. In this work the authors fit the peak of Ĉk with the form A+B(k2 − (k∗)2) +
C(k2 − (k∗)2)2 where k∗ is the peak position of the first peak in Ĉk and scaled the total free energy by
a constant. The authors found reasonable agreement between the front velocity and classical dynamic
density functional theory and also examined a dynamical model that is more faithful to dynamical density
functional theory.
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Chapter 9

Phase Field Crystal Modeling of
Binary Alloys

This Chapter extends the ideas discussed in the previous Chapter and develops a PFC model for a binary
alloy. As in section (8), the starting point is a classical density functional theory for a two-component
mixture. This formal approach is used to motivate the origins of the alloy PFC model. As in the case
of the pure materials, the formalism serves merely as a guide to assure that the correct basic physics is
included in the underlying phenomenology that is subsequently developed. Following the derivation of
the PFC alloy equations, alloy model’s potential is demonstrated in a suite of applications.

9.1 A Two-Component PFC Model For Alloys

The free energy functional for a binary alloy to order C2 can be written as the sum of the free energy
functional for two pure systems plus a coupling term that introduces the direct correlation function
between the two species that make up the alloy. More specifically the free energy functional of an alloy
consisting of A and B atoms to order C2 reads,

F
kBT

=
FA
kBT

+
FB
kBT

−
∫
d~r1d~r2δρA(~r1)CAB(~r1, ~r2)δρB(~r2) + · · · (9.1)

where CAB is the direct two point correlation function between the A and B atoms, FA and FB are
the free energy given by Eq. (8.48) and the + · · · represent higher order A/B correlations. To make a
connection with conventional phase field models of binary alloys (i.e., Models A, B, C ,....) it is useful to
introduce a total density field, and concentration

ρ ≡ ρA + ρB ; c ≡ ρA/ρ, (9.2)

such that ρA = cρ and ρB = ρ(1− c). The free energy given in Eq. (9.1) can now be written in terms of
ρ and c, i.e.,

F ′

kBT
=

∫
d~r
[
ρ ln

ρ

ρl
− δρ− ρ

2

(
c2CAA + (1− c)2CBB + 2c(1− c)CAB

)
ρ+ ρ [(1− c) ln(1− c) + c ln c]

+ρ c

((
CAA − CAB

)
ρlA +

(
CAB − CBB

)
ρlB + ln

ρlB
ρlA

)]
(9.3)
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where a new notation, CIJ (I, J = A,B), has been introduced. In this notation, CIJ is an operator that
acts on the function immediately to its right. For example, CIJρ is written explicitly as

CIJρ ≡
∫
CIJ(|~r − ~r′|) ρ(~r′) d~r′ (9.4)

In Eq. (9.3) ρl ≡ ρlA + ρlB and ρlA, ρlB are the densities of the A and B atoms respectively in a
reference liquid state and as in the pure case the series has been truncated at C2. In addition a constant
(A ≡

∫
d~rρ(ln(ρl/ρlB)+CBBρlB +CAB ρlA(1−ρlB))− (CBBρ2

lB +CAAρ2
lA)/2) has been subtracted such

that F ′ ≡ F − kBTA
Before developing a simple model for simulating binary systems with elasticity, plasticity etc., it is

instructive to consider two simple cases, one in which the density is constant (i.e., a liquid with ρ = ρl)
and the other in which the concentration is constant in the solid phase. While these are obviously not
the most general cases they offer some physical insight into the expansion.

9.1.1 Constant density approximation: liquid

Consider a liquid in which the density is approximately constant, i.e., ρ = ρl (although setting ρ = ρl is
just for convenience it could be set to any constant density). In this case the interesting part of the free
energy functional reduces to;

F ′

kBTρl
≈

∫
d~r

[
[(1− c) ln(1− c) + c ln c]− ρl

2
∆Cδc2 +

(
ln
ρlB
ρlA
− 1

2
(ρlA − ρlB) ∆C

)
δc

]
(9.5)

where δc = c− 1/2,

∆C ≡ CAA + CBB − 2CAB . (9.6)

and all terms not containing c or δc were dropped for simplicity. Next the direct correlation functions
are expanded in the usual fashion in fourier space, i.e., ĈAA = −ĈAA0 + ĈAA2 k2 + · · · or more explicitly
for ∆C,

∆Ĉ = −∆Ĉ0 −∆Ĉ2k
2 + · · · . (9.7)

Note that in the above expansion it was explicitly assumed that 2ĈAB2 > ĈAA2 + ĈBB2 . As will be seen
this assumption is explicitly needed to ensure the gradient energy coefficient is positive. Substituting
these expressions for ∆C and expanding to order δc4 gives,

∆F
kBTρl

=

∫
d~r

[
γ δc+ ω

δc2

2
+

16

3

δc4

4
+K

|~∇δc|2

2

]
(9.8)

where ∆F ′ = F ′(δc) − F ′(0), γ ≡ ln(ρlB/ρlA) + ∆Ĉ0(ρlA − ρlB)/2, ω ≡ 4 + ρl∆Ĉ0 and K = ρl ∆Ĉ2.
Equation (9.8) is the standard Cahn-Hilliard model (or Model B) of phase segregation, where the pa-
rameters that enter that model can be identified in terms of the liquid state correlation functions. More
specifically the parameter that enters the quadratic term (ω) are the inverse isothermal compressibilities
of the liquids not “interaction” potentials as normally identified. An interesting feature of this free energy
is that the gradient energy coefficient can be negative. If this was the case higher order terms in the
direct correlation functions would be required and may lead to sublattice ordering.
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9.1.2 Constant concentration approximation: solid

If the concentration is constant then the model simplifies to the form,

∆F
kBT

=

∫
d~r

[
ρ ln

ρ

ρl
− δρ

]
− 1

2!

∫
d~r1d~r2 C

e δρ1δρ2 (9.9)

where all terms linear in ρ have been included in ∆F and the effective direct two point correlation function
is given by

Ce = c2CAA + (1− c)2CBB + 2c(1− c)CAB . (9.10)

This free energy is identical to the free energy of a pure system (i.e., Eq. (8.48)) to order C2. Thus
prediction made in earlier chapters for elastic, lattice and diffusion constants, can be immediately extended
to include concentration, i.e., the concentration dependence of these constants can now be predicted.
For example for a BCC lattice the equilibrium wavevector was qeq = 1/

√
2 in dimensionless units, or

qeq = 1/
√

2R which implies a lattice constant of aeq = 2π/qeq = 2
√

2πR, where R ≡ (2Ĉ4/Ĉ2)1/2. The
implication is that,

aeq(c) = 2
√

2π

√
2Ĉe4/Ĉ

e
2 (9.11)

where Ce has been expanded in fourier space as was before, i.e.,

Ĉe = −Ĉe0 + Ĉe2k
2 − Ĉe4k4 + · · · (9.12)

where Ĉen = c2ĈAAn + (1 − c)2ĈBBn + c(1 − c)ĈABn . This implies the concentration dependence of the
lattice constant can be written,

aeq(c) = 4π

√
c2ĈAA4 + (1− c)2ĈBB4 + 2c(1− c)ĈAB4

c2ĈAA2 + (1− c)2ĈBB2 + 2c(1− c)ĈAB2

. (9.13)

Expanding around c = 1/2 gives,

aeq(δc) = aeq(0)(1 + ηδc+ · · ·) (9.14)

where η is the solute expansion coefficient given by

η =
1

2

(
δĈ4

ˆ̄C4

− δĈ2

ˆ̄C2

)
, (9.15)

where

C̄ ≡ (CAA + CBB + 2CAB)/4

δC ≡ CAA − CBB (9.16)

such that ˆ̄Cn = (ĈAAn + ĈBBn + 2ĈABn )/4 and δĈn = ĈAAn − ĈBBn . Similar calculations can be made for
the elastic constants.
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9.2 Simplification of Binary Model

In the preceding two sections some properties of a binary CDFT model (to order C2) were examined in
two specific limits. In the limit of constant density it was shown that the model naturally includes phase
segregation, while in the limit of constant concentration it was shown that the model naturally includes
the concentration dependence of the lattice and elastic constants and the liquid/solid phase transition. In
this section a simplified binary PFC model that incorporates all these features (in addition to elasticity,
plasticity, multiple crystal orientations) is presented. Similar to the simple PFC model of a pure system,
the goal is to develop the simplest possible model that includes the correct physical features, not to
reproduce CDFT .

The first step in the calculation is to expand the free energy given in Eq. 9.3 and around ψ = 2c− 1
and n = (ρ− ρl)/ρl). To further simplify the calculations it will be assumed that terms of order n1 can
be neglected since the average value of n (i.e. its integral over space) is zero. Additionally n is assumed
to vary in space much more rapidly than c. In this limit the expansion to order ψ4 and n4 of Eq. (9.3)
becomes,

∆F
kBTρl

=

∫
d~r

[
n

2

(
1− ρl

(
C̄ +

δC

2
ψ +

∆C

4
ψ2

))
n− 1

6
n3 +

1

12
n4

+

(
ln
ρlB
ρlA
− 1

2
(ρlA − ρlB) ∆C

)
ψ

2
+
ψ

2

(
1− ρl

∆C

4

)
ψ +

1

12
ψ4

]
(9.17)

where ∆F ≡ F(ψ, n)−F(0, 0).
The next step is to expand the correlation functions (i.e., C̄,∆C and δC) in fourier space up to order

k4, as was done for the pure material (see Eq. (8.50)). After some straightforward but tedious algebra,
this reduces ∆F to

∆F
kBTρl

=

∫
d~r

[
B`

2
n2 +Bx

n

2
(2R2∇2 +R4∇4)n− t

3
n3 +

v

4
n4 + γψ +

ω

2
ψ2 +

u

4
ψ4 +

K

2
|~∇ψ|2

]
(9.18)

where t = 1/2, v = 1/3 and

C̃i ≡ ˆ̄Ci + δĈiψ/2 + ∆Ĉiψ
2/4

ω ≡ 1 + ρl∆Ĉ0/4

γ ≡ ln(ρlB/ρlA)/2 + ∆Ĉ0(ρlA − ρlB)/4

K = ρl ∆Ĉ2/4

B` = 1 + ρl
ˆ̄C0 + δĈ0ψ/2 + ∆Ĉψ2/4

Bx = ρl

ˆ̃C
2

2

ˆ̃C4

= ρl
ˆ̄C

2

2

ˆ̄C4

(
1−

(
δĈ2

ˆ̄C2

− δĈ4

2 ˆ̄C4

)
ψ +O(ψ)2 + · · ·

)
≡ Bx0 +Bx1ψ +Bx2ψ

2 + · · ·

R =

√√√√2 ˆ̃C4

ˆ̃C2

=

√√√√2 ˆ̄C4

ˆ̄C2

(
1 +

1

2

(
δĈ2

ˆ̄C2

− δĈ4

ˆ̄C4

)
ψ/2 +O(ψ)2 + · · ·

)
= R0 +R1ψ +R2ψ

2 + · · ·(9.19)

Equation (9.18) is a relatively simple model that can be used to simulate solidification, phase segregation
and elasticity/plasticity. In the next several section some basic properties of this model will be discussed.
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9.2.1 Equilibrium Properties: Two dimensions

To determine the equilibrium properties of the model in Eq. (9.18), specific choices for various parameters
must be made. For simplicity the ψ dependence of B` and Bx will be given as B` = B`0 + B`2ψ

2,
Bx = Bx0 and γ will be set to zero. With these choices the phase diagram is symmetric about ψ = 0.
In addition it will be assumed that the parameter K is “large” such that the concentration field (ψ)
varies on ’slow’ scales compared with n. With these simplifications n can be integrated out of the free
energy by in a one mode approximation. Substituting the standard one mode approximation for n (i.e,
φ[cos(2qy/

√
3)/2 − cos(qx) cos(qy/

√
3)] for 2D HCP) into Eq. (9.18), integrating over one unit cell and

minimizing the resulting expression with respect to φ and q gives,

qtri =
√

3/(2R) (9.20)

φtri(ψ) = 4

(
t+
√
t2 − 15v(∆B0 +B`2ψ

2)

)
/(15v) (9.21)

where ∆B = B` −Bx and ∆B0 = B`0 −Bx0 . The free energy per unit area (a2
eq) is then

∆FXtal
kBTρla2

eq

=
ω

2
ψ2 +

u

4
ψ4 +

3

16
∆Bφ2

tri −
t

16
φ3
tri +

45v

512
φ4
tri. (9.22)

Equation (9.22) is now only a function of ψ and can be used to construct the phase diagram as a function
of ψ̄ (i.e., concentration) and ∆B (i.e., temperature). To simplify calculations it is useful to expand FXtal
to lowest order in ψ, i.e.,

∆FXtal(ψ)

kBTρla2
eq

=
∆FXtal(0)

kBTρla2
eq

+
1

2

(
ω +

3

8
B`2φ

2
tri(0)

)
ψ2 +

1

4

(
u− 6(B`2)2φtri(0)

15vφtri(0)− 4t

)
ψ4 + · · ·

≡ F0 +
a

2
ψ2 +

b

4
ψ4 + · · · (9.23)

where F0, a and b are defined by matching the two equations.
If the coefficient of ψ4, (i.e., b) in Eq. (9.23) is negative then higher order terms in the expansion must

be included so that the solution does not diverge. In what follows it is assumed that b is positive. If the
coefficient of ψ2, (i.e., a), is positive then a single phase homogeneous state emerges. If a is negative then
a two phase heterogeneous state emerges with coexisting concentrations (obtained by solving minimizing
∆FXtal with respect to ψ),

ψcoex = ±
√
|a|/b (9.24)

The critical temperature (or critical ∆Bc0) separating the single phase and two-phase region is obtained
by setting ψcoex = 0 and solving for ∆B0. This calculation gives,

∆Bc0 =
15ωv − 2t

√
−6B`2ω

6B`2
(9.25)

Liquid/solid coexistence also requires the free energy density of the liqid. This can be calculated by
assuming that the liquid state is defined by n = n0, which for simplicity will be assumed to be zero. In
this limit the free energy per unit area of the liquid state is,

∆FLiquid(ψ)

kBTρla2
eq

=
ω

2
ψ2 +

u

4
ψ4 (9.26)
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While an exact calculation of the coexistence lines is difficult, to a good approximation the lines can
be obtained by first determining the concentration (ψls) at which the free energies of the liquid and
solid are equal and then expanding about Fliquid and FXtal around ψls to order (ψ − ψls)2. Using this
simple approximation for the liquid and crystal free energies allows for an exact solution of the common
tangent construction (or, Maxwell’s equal area construction) to obtain the liquid/crystal coexistence lines.
Specifically, setting Eq. (9.26) equal to Eq. (9.22) and solving for ψ gives the value of ψ (denoted ψls) at
which the liquid and solid have the same energy per unit area gives,

ψ2
ls =

∆Bls0 −∆B0

B`2
(9.27)

where ∆Bls0 is the lowest value of ∆B0 at which a liquid can coexist with a solid and is given by

∆Bls0 =
8t2

135v
(9.28)

Next, the liquid and solid free energies are expanded about ψ2
ls to second order, i.e.,

F l = F l0 + F l1(ψ − ψls) + F l2(ψ − ψls)2/2 (9.29)

and
F s = F s0 + F s1 (ψ − ψls) + F s2 (ψ − ψls)2/2 (9.30)

These equations give the following chemical potentials for each phase,

µl = F l1 + F l2(ψ − ψls) (9.31)

and
µs = F s1 + F s2 (ψ − ψls). (9.32)

If the equilibrium chemical potential is denoted µls, then the liquid (ψl) and solid (ψs) concentrations
can be expressed as

ψl = ψls + (µls − F l1)/F l2

ψs = ψls + (µls − F s1 )/F s2 (9.33)

Maxwell’s equal area construction rule can be used to calculate µls according to∫ ψls

ψl

dψ (µl − µls) +

∫ ψs

ψls

dψ (µs − µls) = 0. (9.34)

Solving the above expression for µls thus gives,

µls =
F s1F

l
2 − F l1F s2 + (F l1 − F s1 )

√
F l2F

s
2

F l2 − F s2
(9.35)

Thus if (F l1, F
l
2, F

s
1 , F

s
2 ) are known then µls is known and in turn ψl and ψs are known from Eq. (9.33).

Straightforward expansions of the liquid and solid free energy functionals around ψ = ψls gives,

F l1 = wψls + uψ3
ls, F

l
2 = w + 3uψ2

ls, F
s
1 =

4Bl2
5v

∆Blsψls + F l1, F
s
2 =

4Bl2
5v

(4∆B0 − 3∆Bls0 ) + F l2. (9.36)

Equation (9.33) can now be used to construct the liquid/solid part of the phase diagram. A sample phase
diagram is shown in Fig. (9.1) 1.

1Note that the parameter w = −0.04 reported in the corresponding figure in Ref. [64] is a typo.
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Figure 9.1: Phase diagrams in two (a,b) and three (c,d) dimensions. In all figures the parameters are
t = 0.6, v = 1, u = 4, B` = B`0 − 1.8ψ2 (i.e., B`1 = 0, B`2 = −1.8), Bx = 1. The parameter w is 0.088 in
(a) and (c) and 0.008 in (b) and (d). The solid lines are exact one-mode solutions and the dashed lines
are approximate solutions as described by Eqns. (9.24) and (9.33).

9.2.2 Equilibrium Properties: Three dimensions (BCC)

The calculations presented in previous section can easily be extended to a three dimensional BCC crystal
structure. For these calculations a one mode approximation for n is,

n = φ (cos(qx) cos(qy) + cos(qy) cos(qz) + cos(qz) cos(qx))) . (9.37)

Substituting this one mode BCC approximation for n into the free energy, averaging over one unit cell
and minimizing with respect to q and φ gives,

qbcc = 1/(
√

2R) (9.38)

and

φbcc(ψ) = 4

(
2t+

√
4t2 − 45v(∆B0 +B`2ψ

2)

)
/(45v). (9.39)

The free energy per unit volume (a3
eq) is then

FXtal
kBTρla3

eq

=
ω

2
ψ2 +

u

4
ψ4 +

3

8
∆Bφ2

bcc −
t

4
φ3
bcc +

135v

256
φ4
bcc (9.40)

Expanding FXtal as before gives,

∆FXtal(ψ)

kBTρla3
eq

=
∆FXtal(0)

kBTρla3
eq

+
1

2

(
ω +

3

4
B`2φ

2
bcc(0)

)
ψ2 +

1

4

(
u− 12(B`2)2φbcc(0)

45vφbcc(0)− 8t

)
ψ4 + · · ·
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≡ F0 +
a

2
ψ2 +

b

4
ψ4 + · · · (9.41)

For positive a the equilibrium state is homogeneous, while for negative a a two phase heterogeneous state
emerges with coexisting concentrations again at ψcoex = ±

√
|a|/b. The critical temperature (or critical

∆Bc0) can be obtained by setting ψcoex = 0 and solving for ∆B0. This calculation gives,

∆Bc0 =
45ωv − 8t

√
−3B`2ω

12B`2
(9.42)

Setting Eq. (9.40) equal to Eq. (9.26) and solving for ψ gives the value of ψ (ψls) at which the liquid
and solid have the same energy per unit area. This occurs when

ψ2
ls =

∆Bls0 −∆B0

B`2
(9.43)

where ∆Bls0 is the lowest value of ∆B0 at with a liquid can coexist with a solid and is given by

∆Bls0 =
32t2

405v
(9.44)

Proceeding precisely as in the two dimensional case and expanding of the liquid and solid free energy
functionals around ψ = ψls gives

F l1 = wψls + uψ3
ls, F

l
2 = w + 3uψ2

ls, F
s
1 =

8Bl2
15v

ψls + F l1, F
s
2 =

8Bl2
15v

(4∆B0 − 3∆Bls0 ) + F l2

(9.45)

The same steps as in the two dimensional case can be used once more to calculate the phase diagram.
Sample phase diagrams are given in Fig. (9.1).

9.3 PFC Alloy Dynamics

As with the phase field crystal model of a pure system it is assumed that the dynamics is driven to
minimize the free energy, i.e.,

∂ρA
∂t

= ~∇ ·
(
MA

~∇ δF

δρA

)
+ ζA

∂ρB
∂t

= ~∇ ·
(
MB

~∇ δF

δρB

)
+ ζB (9.46)

where MA and MB are the mobilities of each atomic species, which in general depend on density.
The variables ζA and ζB are conserved Gaussianlly correlated noise due to thermal fluctuations of
species A and B respectively and satisfy the fluctuation dissipation theorem, i.e., < ζi(~r, t)ζj(~r

′, t′) >=
−2kBTMi∇2δ(~r − ~r′)δ(t− t′)δi,j

A useful approximation that can be made to Eqs. (9.46) is to assume that the concentration field ψ
can be approximated as follows,

ψ = 2c− 1 = (ρA − ρB)/ρ = (ρA − ρB)/[ρl(n+ 1)] ≈ (ρA − ρB)/ρl. (9.47)
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This assumption leads to the following equation of motion for n and ψ,

∂n

∂t
= ~∇ ·M1

~∇δF
δn

+ ~∇ ·M2
~∇δF
δψ

+ (ζA + ζB)/ρl

∂ψ

∂t
= ~∇ ·M2

~∇δF
δn

+ ~∇ ·M1
~∇δF
δψ

+ (ζA − ζB)/ρl (9.48)

where M1 ≡ (MA + MB)/ρ2
l and M2 ≡ (MA −MB)/ρ2

l . The derivation of Eqs. (9.48) will not shown
here. The reader is referred to Ref. [64].

Applying the relevant functional derivatives to Eqs. (9.48) gives the following driving forces for
Eqs. (9.48),

δF
δn

= Bln+
Bx

2

(
2R2∇2 +R4∇4

)
n+∇2(BxR2n) +

1

2
∇4(BxR4n)− tn2 + vn3

δF
δψ

=
∂B`

∂ψ

n2

2
+
∂(BxR2)

∂ψ
n∇2n+

1

2

∂(BxR4)

∂ψ
n∇4n+ wψ + uψ3 −K∇2ψ. (9.49)

Two representative simulations of Eqs. (9.49) using MA = MB , B` = B`0 + B`2ψ
2, Bx = Bx0 and R =

R0 + R1ψ are shown in Fig. (9.2). The figure on the left illustrates the flexibility of the approach
to simultaneously model liquid/solid transitions, phase segregation, grain boundaries, multiple crystal
orientations and different size atoms in a single simulation. The figure on the right illustrate that the
model can reproduce known structures such as dendrites and eutectic crystals resolved down to the atomic
scale.

In instances when the mobilities are equal and the difference in atomic size is modest a slightly simpler
version of this model can be used. Using, once again, the parameterization B` = B`0 + B`2ψ

2, Bx = Bx0
and R = R0 +R1ψ, and taking the limit of small solute in these parameters, leads to,

∂n

∂t
= M1∇2

(
Bln+BxAn+ 2ηBx (ψB n+ B ψn)− tn2 + vn3

)
∂ψ

∂t
= M1∇2

(
2Bxη nB n+ (w +B`2n

2)ψ + uψ3 −K∇2ψ
)

(9.50)

where A ≡ 2∇2 +∇4 and B ≡ ∇2 +∇4. This version is a little more convenient for numerical simulations.

The alloy PFC model of Eqs. (9.48) can be explored numerically using a Fortran 90 code that ac-
companies this book in the directory “PFC alloy” in CD that accompanies this book. The algorithm
very closely follows the approach of the model C codes studied in connection with solidi of pure materials
and alloys in previous chapters and will not be explicitly discussed here

9.4 Applications of PFC models

The PFC models studied in this book can be applied to a many different physical phenomena in which
elasticity, plasticity and multiple crystal orientations play a role. In this section some of the applications
that can be address by this modeling paradigm are briefly outlined. For more details of implementation,
the reader is referred to the original publications for the details.
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Figure 9.2: Eutectic and Dendritic solidification phenomena. In the figure on the left the grey scale
represents ρ in the top row, ψ in the middle row and the smoothed local free energy density in the bottom
row. The left, middle and right columns corresponds to times t/τD = 106, 260 and 801 respectively. In
figs. (a,d,g) only a portion of the simulation cell is shown corresponding to the region enclosed by the
white squares shown in the other figures. In the figure on the right the top illustrates the ψ for a eutectic
crystal grown from a supercooled liquid and in the bottom figure a dendrite is grown from a supercooled
liquid. In the top right of each figure a small portion of the structures is blown up to show the atomistic
resolution of the simulations.

A natural area for exploration using the PFC model is grain boundaries since the model can describe
crystals of arbitrary orientations and the dislocations that comprise the boundaries. Initial PFC studies
of the energy of such boundaries [69, 68] confirmed the well know Read-Shockley equation [181] for low
angle grain boundaries and were consistent with experiments for large angle boundaries. These results
were reconfirmed in other studies of the PFC model [154] and of the amplitude representation [80]. Other
work focussed on premelting of grain boundaries [26, 154] in which regions close to grain boundaries
or even single dislocations were shown to melt before the bulk melting temperature is reached. It would
be interesting to use the binary PFC model to such solute trapping and drag at grain boundaries and
surface, although no studies have been published to date.

One of the applications that motivated the development of the PFC model was epitaxial growth,
or the growth of a thin film on a substrate with a similar but different crystal structure. The mismatch
of the film/substrate lattice structures gives rise to the growth of strained coherent films, which often
undergo morphological changes to reduce the strain. Common mechanisms for strain relaxation are
surface buckling or mound formation (i.e., an Asaro-Tiller, Grinfeld instability) or the nucleation of
defects within the film. Several studies have been conducted to study these mechanisms using both pure
and binary models and even amplitude expansions [63, 62, 68, 64, 99, 214, 100].
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In other contexts the interaction of substrates (or surfaces) with films or single layers can be easily
modeled by the PFC model as shown in number of studies by Achim et al. [6, 179, 8]. In these studies a
two dimensional substrate was modeled by incorporating an effective surface potential into the PFC free
energy. By implementing a surface potential with for example square symmetry the model can be used
to study commensurate/incommensurate transitions as a function of interaction strength between
the surface layer and substrate. In addition when a driving force is added the model can model pinning
and sliding friction of single layers [7, 180].

The PFC models ability to incorporate elastic and plastic deformations makes it useful for the study of
the material hardness of polycrystalline (or nano-crystalline) materials. An initial study [27] of single
dislocations reveal the existence of Peierls barriers and show that climb and glide follow viscous equations
such that the effective mobility for glide is an order of magnitude faster than climb. Other studies of
the deformation of polycrystalline material have been conducted using the basic PFC model [69, 68], the
modified PFC model [189] and with a novel numerical algorithms for modeling compression and tension
[92]. These studies have been able to reproduce the reverse Hall-Petch effect in which the yield strength
increases as a function of grain size as observed in experiments on nano-crystalline materials [218].
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Appendix A

Basic Numerical Algorithms for
Phase Field Equations

This section describes the basic ideas of finite difference, finite volume and finite element methods for
discretizing and numerically solving phase field and related partial differential equations. It discusses
explicit time marching as a simple way for evolving such equations forward in time. It also points out
the main differences between explicit and implicit methods. For a detailed discussion of implicit methods
and other numerical methods, the reader is referred to the many texts available on this topic (e.g. [169]).
The material in this appendix compliments the discussions on numerical algorithms presented in the text.
The reader new to numerical modeling is thus encouraged to read this appendix first in order to better
understand the numerical algorithms presented in the text and the Fortran 90 codes provided in the CD
that accompanies the book.

A.1 Explicit Finite Difference Method for Model A

The simplest phase field equation examined in this book is the model A type equation examined previously.
This equation serves as a paradigm for for magnetic domain growth in a ferromagnet. It is of the form

τ
∂φ

∂t
= W 2

φ∇2φ− ∂fbulk(φ, c)

∂φ
(A.1)

where fbulk(φ, c) can be assumed to be some non-liner function of space and τ and Wφ are constants.
Also, an isotropic gradient energy term is assumed here for simplicity. Equation (A.1) also serves as a
paradigm for many non-linear reaction-diffusion equations. A computer can only represent a continuum
at discrete set of points (i, j) ((i, j, k) in 3D) that are physically separated by some length scale ∆x, ∆y,
∆z. Similarly, time can only march along in discrete units of a small time step ∆t. As a result continuum
fields go over to discrete arrays defined at these discrete points in space and time, i.e. φ(x, y, t)→ φn(i, j),
where x = i∆x, y = j∆y, t = n∆t and the discrete indices satisfy i = 0, 1, 2, 3, · · ·N , j = 0, 1, 2, 3, · · ·N
and n = 0, 1, 2, · · ·, where N is such that (N − 1)∆x = L and L is the size of the physical domain,
assumed here to be square. Here it is assumed that N is the same in each spatial direction, although it
is straightforward to generalize all conclusions below to different N in each direction 1.

1The function c can also be discretized as c(x, y, t)→ cn(i, j)
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Figure A.1: Schematic of the uniform rectangular grid (solid lines) neighboring a pint (i, j) on the grid.
The dashed box denotes the finite volume associated with the grid point (i, j).

The layout of a uniform numerical mesh around a discrete coordinate P = (i, j) is shown in Fig. (A.1).
Points to the right and left, top and bottom or P = (i, j) are referred to as nearest neighbours. Points at
the diagonals of the square surrounding P are referred to as next nearest neighbours.

A.1.1 Spatial derivatives

There are several ways the to express the laplacian operator (i.e. ∇2) in Eq.(A.1) on a discrete mesh in
terms of φ(i, j) (dropping the n for now). The starting point is to relate φ(i, j) to its value at the nearest
and next nearest neighbours of P ≡ (i, j) (see Fig. (A.1)). This can be done using a Taylor series since
the neighours are on the order of dx ∼ dy � 1 from P . Expanding φ(i, j) around P thus gives,

φ(i± 1, j) = φ(i, j)± ∂φ(i, j)

∂x
∆x+

1

2

∂2φ(i, j)

∂x2
∆x2 (A.2)

φ(i, j ± 1) = φ(i, j)± ∂φ(i, j)

∂y
∆y +

1

2

∂2φ(i, j)

∂y2
∆y2 (A.3)

φ(i± 1, j ± 1) = φ(i, j)± ∂φ(i, j)

∂x
∆x+

1

2

∂2φ(i, j)

∂x2
∆x2 ± ∂φ(i, j)

∂y
∆y +

1

2

∂2φ(i, j)

∂y2
∆y2 (A.4)

The ± versions of Eqs (A.2)-(A.4) describe expansions of φ about P using information from right/left or
top/bottom neighbours of the point (i, j). The simplest form of the discrete laplacian operator is obtained
by considering information only from the top/bottom and left/right neighbours of (i.j). Assuming for
simplicity that ∆x = ∆y and adding the + and − versions of Eq. (A.2) to the sums of the + and −
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versions of Eq. (A.3) yields, after re-arranging,

∇2φ(i, j) =
1

∆x

(
{φ(i+ 1, j)− φ(i, j)} − {φ(i, j)− φ(i− 1, j)}

∆x

+
{φ(i, j + 1)− φ(i, j)} − {φ(i, j)− φ(i, j − 1)}

∆x

)
+O(∆x)2

≈ 1

∆x2
(φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1) + φ(i, j − 1)− 4φ(i, j)) (A.5)

To highlight the intuitive nature Eq. (A.5), it is suggestively couched in the form of a finite difference of
the right and left finite differenced one-sided derivatives.

Equation (A.5) is inherently anisotropic and is useful for very smoothly varying fields. For equations
with rapidly varying solutions, such as those encountered in phase field and phase field crystal modeling
a more stable and isotropic form of the laplacian operator is required. This is obtained by incorporating
information from the next nearest neighbors. Once again, the + and − versions of Eq. (A.2) are added
to the sums of the + and − versions of Eq. (A.3). To the resulting equation is now added the sum of the
four equations generated by Eqs. (A.4), each weighted by 1/2. The result is

∇2φ(i, j) =
1

∆x2

(1

2

[
φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1) + φ(i, j − 1)

]
+

1

4

[
φ(i+ 1, j + 1) + φ(i− 1, j + 1) + φ(i+ 1, j − 1) + φ(i− 1, j − 1)

]
− 3φ(i, j)

)
+O(∆x)2 (A.6)

This form of the discrete Laplacian was first used by Oono and Puri [164].
Weighting of the contribution from the next nearest neighbours by 1/2 implies that their contribution

is less important to the laplacian at (i, j) than is that of the nearest neighbours. Many other such
averaging schemes are possible. In the limit of small ∆x, they all become equivalent.

A.1.2 Time marching

The simplest way Eq. (A.1) can evolved in discrete time on the discrete mesh illustrated in Fig. (A.1), is
by applying a simple forward differencing scheme to the time derivative given by

∂φ

∂t
≈ φn+1(i, j)− φn(i, j)

∆t
(A.7)

Equation (A.7), in conjunction with one of the second order accurate discretization schemes for the
laplacian yield the following algorithm for numerical time integration of φn(i, j),

τ
φn+1(i, j)− φn(i, j)

∆t
= W 2

φ∆2φn(i, j)−N(φn(i, j), cn(i, j)), (A.8)

where ∆2 represents the discrete Laplacian and

N(φ, c) ≡ ∂fbulk(φ, c)

∂φ
(A.9)
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In the example of Eq. (A.1) fbulk is the thermodynamic free energy density of the system. In general,
N(φ, c) will hereafter represent the non-gradient terms on of a reaction-diffusion type equation.

Equation (A.8) is a coupled map lattice that allows for solutions of φ at a future time t = (n+1)∆t to
be computed based simply on information of the field φ at a past time t = n∆t according to the simple,
so-called, Euler scheme

φn+1(i, j) = φn(i, j) +
W 2
φ∆t

τ∆x2
∆̄2φn(i, j)− ∆t

τ
N(φn(i, j), cn(i, j)) (A.10)

where ∆̄2 denotes either Eqs. (A.5) and (A.6) with the ∆x2 removed. The algorithm in Eq. (A.10) is
known as an explicit because all quantities on the right hand side are evaluated at time t = n∆t. A
major disadvantage of explicit methods is that they are numerically stable only for very small ∆t. For
the case of two spacial dimensions it will be shown below (see Eq. (A.33)) that Eq. (A.10) converges for
time steps that satisfy ∆t < ∆x2/(4W 2

φ/τ). This restriction of the time step can make make explicit

simulations very impractical since both Wφ and τ are microscopic parameters and thus W 2
φ/τ represents a

characteristic time to diffuse across a microscopic scale. A large number of time steps a are thus required
to span an experimentally relevant time scale. The nature of this explicit time restriction is discussed
further in section (A.3).

A.2 Explicit Finite Volume Method for Model B

The Cahn-Hilliard equation (”model B”), the heat or mass diffusion equations of model C phase field
models, as well as the phase field crystal equation are all examples of flux conserving equations. They
have the form

∂c

∂t
= −∇ · ~J (A.11)

where ~J is a flux of some quantity (e.g. heat, mass, density, etc). The flux ~J is typically related to the

gradient of the field c(~x, t (e.g. ~J = −M∇µ(c(~x, t)), where µ is a chemical potential). It is important
when integrating such equations to use a method accurate enough to respect the conservation law of the
quantity that these equations are meant to evolve. This particularly true for the mass diffusion equation
encountered in phase field modeling of binary alloys. The flux balance required to conserve solute in the
case of two-sided diffusivity, as well as the sharp boundary layers over which gradients must be resolved
can lead to oscillatory instabilities when using simple finite difference schemes. A better way to discretize
flux conserving equations is using the finite volume method.

A.2.1 Discrete volume integration

The finite volume method begins with a rectangular grid of volumes, at the centre of which lies the grid
point ”(i, j)” of the usual finite difference mesh used in the previous sub-section (see Fig. (A.1)). The
idea behind the method is to integrate both sides of the conservation Eq. (A.11) over the area (volume
in 3D) of the finite volume in the dashed lines in Fig. (A.1). This gives∫

vol

∂c

∂t
d3~x = −

∫
vol

∇ · ~Jd3~x = −
∫

surf

~J · d~s (A.12)
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The last equality in Eq. (A.12) uses Gauus theorem to convert the volume integral of a divergence of flux
into a surface integral of the normal flux through the surface (perimiter in 2D) enclosing the volume.
The next step is to approximate the integrals in Eq. (A.12) to lowest order, which gives

dc(i, j, t)

dt
dxdy = −

{
~Jright · î dy + ~Jtop · ĵ dx− ~Jleft · î dy − ~Jbot · ĵ dx

}
(A.13)

where ~Jright is the flux evaluated at the centre of the right hand edge (face in 3D) of the volume depicted

by a dashed line in Fig. (A.1), and î dy ≡ d~s is the distance (area in 3D) vector on the right face of
the finite volume. Similar definitions apply for the other directions in the volume. The finite volume is
assumed to be small enough that both the flux and area vectors can be assumed to be approximately
constant along the length (area) of the control volume. The volume integral on the left hand side of
Eq. (A.13) is analogously approximated by taking ∂tc out of the integral. This so-called one-point rule
can easily be replaced by a more accurate integration rule that uses information from corner nodes. For

compactness of notation the symbol ~Jright · î =
(
~Jright

)
x
≡ JnR is introduced to define the component

of flux on the right hand edge of the finite volume along the normal vector î. Similarly, JnT = ~Jtop · ĵ,
JnL = ~Jleft · î and JnB = ~Jbot · ĵ will be used in Eq. (A.13).

A.2.2 Time and space discretization

The time derivative on the left hand side of Eq. (A.13) is computed using Eq. (A.7) and evaluating the
fluxes on the right hand side of Eq. (A.13) at time t = n∆t gives,

cn+1(i, j)− cn(i, j)

∆t
dxdy = −{(JnR − JnL ) dy + (JnT − JnB) dx} (A.14)

Equation (A.14) provides another type of explicit scheme for updating update cn(i, j). Note that if
Eq (A.11) contains a source term of the form N(c(~x, t)) on the right hand side, then Eq. (A.14) will
contain an extra term

−
∫

vol

N(c(~x, t))d3~x ≈ −N(cn(i, j)) dxdy (A.15)

on the right hand side. Assuming that ∆x = ∆y and that the flux can be written as ~J = −MQ(cn(i, j))∇µ[c] ≡
−MQn∇µ[c]) gives,

cn+1(i, j) = cn(i, j) +
M∆t

∆x

{([
Qn∇µn

]
R
−
[
Qn∇µn

]
L

)
+
([
Qn∇µn

]
T
−
[
Qn∇µn

]
B

)}
−∆tN(cn(i, j))

(A.16)
where the notation

[
Qn∇µn

]
R/L

denote the î components of flux evaluated at the centre of the right/left

edges (face 3D) of the dashed volume element in Fig. (A.1), while
[
Qn∇µn

]
T/B

denote the ĵ components

of flux evaluated at the centre of the top/bottom edges (face 3D) of the dashed volume element. Taken
with their corresponding signs in Eq. (A.16), these terms represent fluxes along the normals of the
corresponding edges (see red arrows in Fig. (A.1)). It should be noted that quantities requiring evaluation
at the centres of the dashed lines in the finite volume depicted in Fig. (A.1) must be interpolated from
the corresponding quantities at the mesh points indicated, which are the ones actually being stored in
the computer at any time step.
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It is noted that for the special case where Q(c) = 1, centered differences about the finite volume
faces are used to evaluate fluxes, and µ = c, Eq. (A.16) reduces to the form of Eq. (A.10) and there
is no difference between finite volume and finite differencing. However, when the diffusion coefficient is
spatially dependent, it is preferable and easier to use Eq. (A.16).

As with all explicit methods, the time marching algorithm of Eq. (A.16) is only stable with a sufficiently
small value of ∆t. The precise formula for the restriction of ∆t for this case depends on the form of the
chemical potential µ. For the special case of µ = c, the criterion is once again of the form ∆t < ∆x2/4M
(in 2D). For more complex chemical potential, where µ contains a square gradient of the concentration
(e.g. the Cahn-Hilliard model), the stability criterion becomes ∆t < ∆x4/(32M) in two dimensions.
These stability formulae for explicit methods are discussed in more detail in section (A.3).

A.3 Stability of Explicit Time Marching Schemes

This section discusses in detail the stability criteria for explicit time integration methods. It also discusses
implicit time marching methods, which typically permit ∆t to be much larger than that possible in explicit
methods. Unlike explicit methods, implicit time integration schemes evaluate quantities on the right hand
side of an discretized equation (e.g. the laplacian and non-linear term) at the time t = (n+ 1)∆, rather
than at t = n∆t. So-called semi-implict methods evaluate one the spatial gradients at t = (n + 1)∆t
but leave the non-linear terms at t = n∆t. This difference makes implicit methods amenable to the
use of much larger values of ∆t than in explicit methods. On the other hand, implicit methods can
often required a very large amount of overhead, so much so that it can sometimes negate any advantage
afforded by the much larger time step.

A.3.1 Linear stability of explicit methods

Explicit time stepping schemes such as Eq. (A.10) and Eq. (A.16) utilize information from the previous
time (n) to propagate a field (labelled here a φ or c) one time step into the future (i.e. from n→ n+ 1).
Their main advantage is that they require minimal overhead in terms of memory allocation and are very
easy to program on a computer. Their main disadvantage is that they are limited to small time steps
∆t before their numerical integration becomes highly inaccurate and ultimately fails to converge. To
illustrate the nature of this time step limitation, the linearized version of the discrete Equation (A.10)
will be analyzed below for various versions of the numerical laplacian operator and for the case where

N(φ, c) = −φ (A.17)

To keep notation simple, assume that space is in dimensions of Wφ and time in units of τ .

Considering first one dimension, the discrete solution φn(j) (j = 1, 2, 3, · · ·N) is expanded in a discrete
Fourier series as

φn(j) =
1√
N

N∑
k=1

φ̂n(k)e−i(2π j k)/N (A.18)

where φ̂n(k) is the discrete Fourier component k, which corresponds to the continuum wave vector

q ≡ 2πk

N∆x
(A.19)
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This is obtained by comparing exp (2πjk/N) to exp (qx), the latter being the factor appearing in the
continuous Fourier transform. Substituting Eq. (A.18) into the 1D version of Eq. (A.10) (i.e. ignore all
i terms), and equating the coefficients of exp (−i (2π j k) /N) gives,

φ̂n+1(k) = (1 + γk∆t) φ̂n(k) (A.20)

where

γk ≡ 1− Γk = 1− 2

∆x2

[
1− cos

(
2πk

N

)]
(A.21)

Comparing Eq. (A.20) with its continnum counterpart

φ̂n+1(k)− φ̂n(k)

∆t
=
(
1− q2

)
φ̂n(k) (A.22)

shows that Γk is the finite size, discrete laplacian. Indeed, in the limit of long wavelengths, or alternatively,
infinite system size (i.e. 2πk/N � 1), a Taylor series expansion of Γk gives

Γk ≈
(

2πk

N∆x

)2

− ∆x2

12

(
2πk

N∆x

)4

+ · · · (A.23)

Thus, at long wavelengths Γk → q2.
The solution of Eq. (A.20) is found by substituting the trial function φ̂n(k) = aoA

n which yields

[A− (1 + γk∆t)] aoA
n = 0 (A.24)

which gives A = (1 + γk∆t). From the initial conditions φ̂0(k), ao is determined and thus

φ̂n(k) = (1 + γk∆t)
n
φ̂0(k) (A.25)

It is clear from inspection of Eq. (A.25) that two conditions for a divergent discrete solution exist:

1 + γk∆t > 1

1 + γk∆t < −1 (A.26)

The first case corresponds to γk > 0 or 1 − Γk > 0, which will always occur for some sufficiently large
wavelengths, given sufficiently large system. This divergence also occurs in the exact solution of the
diffusion equation, φ̂(k) = e(1−q2)t, for q2 < 1. It is a physical linear instability that leads to a growing
solutions (e.g. the start of phase separation), which are ultimately bounded by the φ3 or one of the other
polynomial order terms of φ that occur in the non-linear terms N(φ). This will be discussed further below.
The second criterion for a divergent solution in Eq. (A.26) requires that γk∆t < −2, which imposes a
time step constrain on the diffusion equation of the form

∆t <
−2

1− Γk
(A.27)

The most stringent condition on ∆t occurs when Γk is a maximum, which occurs at the wave vector
k = N/2, which gives, from Eq. (A.21), γk = 1 − 4/∆x2. Thus, the stability criterion of Eq. (A.27) in
one spatial dimension becomes

∆t <
2∆x2

4−∆x2
≈ ∆x2

2
(A.28)
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where the second equality assumes, as is usual, that ∆x� 1 in numerical simulations.
The arguments above can be applied to two and three dimensions as well. For example, in 2D, the

analogue of the expansion in Eq. (A.18) is

φn(i, j) =
1

N

N∑
kx=1

N∑
ky=1

φ̂n(kx, ky)e−I2π(i kx+j ky)/N (A.29)

(where I =
√
−1 is used here to avoid confusion with i, the lattice index.) Substituting Eq. (A.29) into

Eq. (A.10), with Laplacian given by Eq. (A.5), gives

φ̂n+1(kx, ky) = (1 + γk∆t) φ̂n(kx, ky) (A.30)

where now

γkx,ky ≡ 1− Γkx,ky = 1− 2

∆x2

[
2− cos

(
2πkx
N

)
− cos

(
2πky
N

)]
(A.31)

Proceeding exactly as the 1D case yields

φ̂n+1(kx, ky) =
(
1 + γkx,ky∆t

)n
φ̂0(kx, ky) (A.32)

The same stability considerations considered previously now yield the time step constraint

∆t <
2∆x2

8−∆x2
≈ ∆x2

4
(A.33)

The one dimensional and two dimensional stability thus differ by a factor of 1/2.
The same considerations can similarly be applied to model A with the more isotropic laplacian of

Eq. (A.6). It is left to the reader to work through the stability analysis to find that the stability criterion
corresponding to the numerical laplacian operator in Eq. (A.6) is given by

∆t <
2∆x2

4−∆x2
≈ ∆x2

2
(A.34)

which is a significant improvement over the 2D stability achieved by using the laplacian of Eq. (A.5).
Equations (A.28), (A.33) and (A.34) all imply that information cannot be propagated –numerically

or otherwise– over the length scale ∆x faster than the diffusion time inherent in the original equation.
When the full non-linear form of N is implemented maximum on ∆t is typically reduced even further,
depending on the strength of the non-linearity.

Model B type equations, such as Eq. (A.16), can contain higher order gradients. For example, the
diffusion of chemical impurities in a dilute phase is described by ∂tc = M∇2µ where µ = ∂f/∂c −∇2c.
Using Eq. (A.5) to finite difference µ, the linear portion of the finite difference form of this diffusion
equation becomes (in 1D for simplicity)

cn+1(i) = cn(i)− ∆t

∆x2

[
cn(i+ 2)− 4 cn(i+ 1) + 6 cn(i)− 4 cn(i− 1) + cn(i− 2)

]
(A.35)

Substituting the discrete Fourier expansion of the form Eq. (A.18) into Eq. (A.35) gives, after some
algebraic manipulations, ∆t < ∆x4/(8M). Generalizing this procedure to two and three dimensions is
straightforward, and yield the following criterion time step limitation for model B –at least in the linear
stability sense–

∆t <
∆x4

22d+1M
(A.36)
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A.3.2 Non-linear instability criterion for ∆t

The biggest restriction to linear stability discussed in section (A.3.1) arises in the interface since ∆x is
usually small there to resolve the order parameter. As φ moves away from the interface, ∆x can become
larger as interface resolution issues do not arise in phase field simulations. it turns out, however, that even
away from the interface, there is a restriction to the time step for explicit methods due to the non-liner
terms in N(φ, c). This is shown here by investigating the effect of the non-linear terms at work in a
Model A type equation the discrete form of which is given by

φn+1(i) = φn(i)−∆tN(φn(i), U) (A.37)

where it is recalled that t is in units of τ an where U here represents an external field or a general coupling
of the φ field to a dimesionless temperatire or chemical driving force acting at the mesh point i. For
simplicity, only one dimensional is considered in this analysis. As usual, the extension to two and three
dimensions is exactly analogous.

Eq. (A.37) is an iterative mapping whose stable or fixed points, at any mesh point i, are found by
solving

φ∗ = φ∗ −∆tN(φ∗, U) (A.38)

Consider as a concrete example the interpolations function for the order parameter equations in sec-
tion (5.7.3) (where φ varies from −1 to +1). Equation (A.38) becomes

φ∗ − (φ∗)3 − λ̂U(1− (φ∗)2)2 = 0, (A.39)

the solutions of which are

φ∗ = ±1

φ∗ =
1

2λ̂U

(
−1±

√
1 + 4

(
λ̂U
)2
)

(A.40)

The first two of these roots should be recognized as the bulk values of the order parameter in model C
for the pure material or alloy models discussed in the main text. Typically, the driving force λ̂U is small
and so one of two roots on the last line of Eq. (A.40) becomes φ∗ ≈ λ̂U , while the other satisfies |φ∗| > 1
and will be ignored.

The root φ∗ ≈ λ̂U is unstable as any perturbation at all from φ = φ∗ causes φ to flows away from it.
The roots φ∗ = ±1, on the other hand, can be stable or unstable depending on the size of ∆t. This is
illustrated in Fig. (A.2). For small enough ∆t, φ∗ = ±1 becomes a stable attractive fixed point. That
means that the sequence of iterates {φn(i)} asymptotically goes to φ∗ = 1. As ∆t increases, the sequence
of iterates {φn(i)} will eventually become locked in a so-called limit cycle around the φ∗ = 1 fixed point,
signaling the breakdown of stability 2.

The criterion separating stable from non-stable behaviour for a fixed point of the iterative map in
Eq. (A.37) is given by

∂φn+1

∂φn

∣∣∣∣
φn=φ∗

= 0

=⇒ 1 + ∆t
(

1− 3(φ∗)2 + 4 λ̂U
(
1− (φ∗)2

)
φ∗
)

= 0

(A.41)

2(It is simplest to consider the physical case where all φ(i) values )initially lie in the range −1 ≤ φ0(i) ≤ 1). Indeed, for
φ0(i) values lying too far from φ∗ = ±1, iterates φn(i) will diverge to ±∞
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Figure A.2: Flow of iterates of the map φn+1 = f(φn) where f(x) = x + ∆t
(
x− x3 − λ̂U(1− x2)2

)
.

(Left) for ∆t < 1/2, iterates φn+1(i) flow to the fixed point φ∗ = 1. (Right) For ∆t > 1/2 the fixed point
generates a so-called limit cycle. Further increasing ∆t will cause the interates φn+1(i) to diverge. In ths

figure λ̂U = −0.25.

Substituting φ∗ = ±1 into the last line of Eq. (A.41) sets the threshold on the maximum value of ∆t as

∆t <
1

2
(A.42)

As mentioned at the beginning of this subsection, the non-linear conditions imposed by Eq. (A.42) is less
restrictive than the linear condition imposed by Eq. (A.33), due to the fact that in most cases the mesh
spacing should resolve the interface with some degree of accuracy, i.e. ∆x ≤ 1. To the extent that it is
sufficient to very weakly resolve the interface, it is possible to let ∆x > 1, thus allowing ∆t to increase
toward its ultimate cap imposed by Eq. (A.42). It turns out however, that there is also a constraint on
how large ∆x can be made in an explicit method before a grid-related instability sets in. This is examined
next.

A.3.3 Non-linear instability criterion for ∆x

This subsection continues with the example of section (A.3.2) and examines the effect of ∆x on the
stability of a model A type phase field eqution. In particular, consider to linear order the structure of
the steady state solution of the model A type equation studied in the previous section around one of its
stable points, φ∗ = {λ̂U,±1}. Let the solution be expressed in the form φ = φ∗ + δφ. Substituting this
expansion of φ into model A gives

∇2δφ+
(

1− 3(φ∗)2 + 4 λ̂U(1− (φ∗)2)φ∗
)
δφ+

{
φ∗ − (φ∗)3 − λ̂U(1− (φ∗)2)2

}
︸ ︷︷ ︸

=0, Eq. (A.39)

= 0 (A.43)
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The solution of Eq. (A.43) in 1D is of the form

δφ ∼ e±
√

2x, for φ∗ = ±1

δφ ∼ e±i
√
βx, for φ∗ ≈ λ̂U, (A.44)

where

β = 1− 3(λ̂U)2 + 4 (λ̂U)2(1− (λ̂U)2) ≈ 1 + (λ̂U)2 (A.45)

The criterion determining how large ∆x can now be made on the basis of how well the solution of the
discretized equation corresponding to Eq. (A.43) reproduces the solution forms implied by Eqs. (A.44).

The discrete version of Eq. (A.43) is given by

δφn(i+ 1)− 2δφn(i) + δφn(i− 1) + ∆x2
(

1− 3(φ∗)2 + 4 λ̂U(1− (φ∗)2)φ∗
)
δφn(i) = 0 (A.46)

where Eq. (A.5) is assumed for the square gradient operator. Consider first the case φ∗ ≈ λ̂U . Equa-
tion (A.46) is solved by a solution of the form

δφn(i) = AΛi (A.47)

if the constant Λ is equal to

Λ =

(
2− β∆x2 ±

√
(β∆x2 − 2)

2 − 4

)
2

(A.48)

Similarly, the case φ∗ = ±1 is solved by a solution of the for og Eq. (A.47), if Λ takes the form

Λ =

(
1 + ∆x2 ±

√
(∆x2 + 1)

2 − 1

)
(A.49)

The φ∗ = ±1 roots in Eq. (A.49) are always real and this so in Eq. (A.49) can always be cast into the

analytical form in second line of Eqs. (A.44). On the other hand, for the solution of the φ∗ = λ̂U solution
of the order parameter can only be cast into the form of the first line in Eqs. (A.44) if the root Λ in
Eq. (A.48) is complex. This implies that the radical must be negative, which requires

(
β∆x2 − 2

)2 − 4 < 0

=⇒ ∆x <
2√

1 +
(
λ̂U
)2

(A.50)

Thus Eq. (A.50) puts a hard limit on how large ∆x can be which, not very surprisingly perhaps, is very
close to ∆x ≈ 1, when the driving force becomes large, as previously suspected by physical considerations.
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A.3.4 A word on implicit methods

The restriction on ∆t imposed by explicit time marching can be overcome by using an semi-implict time
marching scheme, which allows for much larger time steps ∆t to be used. Briefly, implicit method express
the fields on the right hand side of Eq. (A.8) in terms of the new time n+ 1. This results in an implicit
system of equations of the form A~xn+1 = b(~xn), where ~xn+1 is the solution at all nodes at the new time
n+ 1, which depends on the solution at all nodes at the previous time step, n, and A is a non-diagonal
matrix of constants. This system of equations can formally be inverted to be solved. However, most
straight inversion approaches require too many operations and are or little use to phase field modeling.
For example, on an N × N mesh, matrix inversion of the above system of equations could take as long
as N3 operations. A simpler alternative is to solve this system of equations by iteration, however the
simplest iterative methods (e.g. Jacobi, Conjugate gradient, Gauss-Seidel) 3 can require of order ∼ N2

operations to converge, although usually this is much lower if the previous time step is used to seed
the the initial condition of the iteration sequence. Contrast these to one time update of an explicit
scheme which also requires ∼ N2 operations. Indeed, in some simple semi-implicit methods the gains of
using a larger time step can be nullified by their convergence time. Two exceptions to this general rule
are multi-grid methods and Fourier techniques, the latter of which is discussed further below. Implicit
methods are beyond the scope of this book and the reader is refereed to the literature on this topic for
more information.

A.4 Semi-Implicit Fourier Space Method

This section describes the formulation of a Fourier-based semi-implict method for solving phase field
crystal type equations. A great advantage of working in Fourier methods is that in frequency space, even
powers of gradients become even-powered algebraic expressions of the wave vector (or inverse wavelength).
These methods are thus especially convenient to use with equations that exhibit periodic solutions such
as those found in phase field crystal models.

The paradigm equation to be considered is of the form

∂ρ

∂t
= ∇2

(
δF [ρ]

δρ

)
(A.51)

A commonly used form of F [ρ] in phase field modeling is given by

F [ρ] =

∫ {
ρ

1− C(∇)

2
ρ+ f(ρ)

}
d~x (A.52)

where the operator C(∇) is in general a function of gradient operators, i.e.,

C(∇) = C0 + C2∇2 + C4∇4 (A.53)

while f(ρ) denotes any non-inear function of the field ρ. The generic free energy given by Eqs. (A.52)-
(A.53) can be specialized to the case of the phase field crystal model by setting 1 − C(∇) = Bl +

3The simplest iterative schemes, Jacobi iteraction. decomposes the system A~xn+1 = b(~xn) into (AD + Ao)~xn+1 =
b(~xn), where AD is the diagonal portion of A and Ao is the off-diagonal portion. The original system is then written as
AD~x

n+1
m+1 = b(~xn)−Ao~x

n+1
m where m is an iteration index. An initial ”guess” for ~xn+1

0 leads to ~xn+1
1 , which is substituted

back into the right hand side, leading to ~xn+1
2 , etc. The sequence {~xn+1

m } presumably converges to a fixed point, i.e. ~xn+1.
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2BsR
2∇2 +BsR

4∇4 (which would make the phase field crystal constants Bl = 1−C0, Bs = C2
2/(4|C4|))

and f(ρ) = −ρ3/6 + ρ4/12. This model can also be specialized to the Cahn-Hilliard equation used to
study spinodal decomposition by setting C0 = −1, C2 = 1, C4 = 0 and dropping the cubic term in f(ρ).

Substituting Eq. (A.52) into Eq. (A.51) gives

∂ρ

∂t
= ∇2 [(1− C(∇))ρ+N(ρ)] (A.54)

where N(ρ) ≡ ∂f(ρ)/∂ρ. Equation (A.54) can be efficiently solved numerically by taking the Fourier
transforms of both sides of Eq. (A.51), which yileds

∂ρ̂k
∂t

= ∆2
k(1− Ĉ(|k|))ρ̂k + ∆2

kN̂k[ρ] (A.55)

where N̂k[ρ] is the Fourier transform of N(ρ) and ∆2
k is the discrete Fourier space representation of the

∇2 for a finite size system (which is algebraic in Fourier space). For example in a system of infinite size

∇2 → |~k|2. Finally, Ĉ(|~k|) is the Fourier transform of the operator C(∇)ρ.
Defining wk ≡ ∆2

k(1− Ĉ(|k|)), and n̂k(t) ≡ ∆2
kN̂k[ρ], we can formally invert Eq. (A.55) 4, obtaining

ρ̂k(t) = ewkt
∫ t

0

e−wksn̂k(s)ds+ ewktρ̂k(0) (A.56)

can similarly write Eq. (A.56) at time t+ ∆t,

ρ̂k(t+ ∆t) = ewk(t+∆t)

∫ t+∆t

0

e−wksn̂k(s)ds+ ewk(t+∆t)ρ̂k(0)

= ewk(t+∆t)

(∫ t

0

e−wksn̂k(s)ds+

∫ t+∆t

t

e−wksn̂k(s)ds

)
+ ewk(t+∆t)ρ̂k(0)

= ewk∆tρ̂k(t) + ewk(t+∆t)

∫ t+∆t

t

e−wksn̂k(s)ds (A.57)

The integral in the last line of Eq. (A.57) must be numerically approximated to proceed. To do so, it
is instructive to first approximate it using the trapezoidal rule and subsequently expand n̂k(t + ∆t) to
second order in ∆t, i.e. n̂k(t+ ∆t) ≈ n̂k(t) + (dn̂k(t)/dt) ∆t. This gives,∫ t+∆t

t

e−wksn̂k(s)ds =
1

2

(
e−wktn̂k(t)∆t+ e−wk(t+∆t)n̂k(t)∆t+O(∆t)2

)
(A.58)

Equation (A.58) thus suggests a convenient approximation of the integral in Eq. (A.57) of the form∫ t+∆t

t

e−wksn̂k(s)ds ≈ n̂k(t)

∫ t+∆t

t

e−wksds (A.59)

4This utilizes the solution methodology for the first order ODE y′ + p(x)y = g(x) whose solution is given by y =(∫ x
µ(s)g(s)ds

)
/µ(x), where the integration factor µ(x) = exp(−

∫ x
p(s)ds). In our case, p(t) = −wk and g(t) = n̂k(t) as

defined in the text.
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Equation (A.59) allows us to write Eq. (A.57) in it final form,

ρ̂k(t+ ∆t) ≈ e[∆2
k(1−Ĉ(|k|))∆t] ρ̂k(t) +

e[∆2
k(1−Ĉ(|k|))∆t] − 1

(1− Ĉ(|k|))
N̂k[ρ(~x, t)] (A.60)

Equation (A.60) formally constitutes numerical scheme for time marching Eq. (A.55). A higher order
form of this scheme can be found in Ref. [154]. It becomes identical to traditional explicit time marching
for ∆t� 1. Its main advantage, however, is that it can be used with significantly larger time steps than
most traditional semi-implicit schemes. Moreover, unlike most semi-implict methods, the one presented
here requires only O(N2) operations per time step. Of course, like semi-implicit methods, there is some
upper bound to ∆t. Specifically, solutions of Eq. (A.60) can become less accurate as ∆t � 1 and
eventually diverge.

A.5 Finite Element Method

Since its introduction into main stream phase field modeling about 10 years ago, one of the most efficient
numerical scheme for [accurately] simulating phase field models is the use of adaptive refinement (AMR).
At the heart of AMR is the use of non-structured meshes, on wich the physics of a particular model
is played out using finite difference, finite volume or finite element methods. A separate section on
adaptive re-meshing algorithm is beyond the scope of this book. (The interested reader can refer to one
of [172, 174, 87] and references therein for details on AMR). The solvers in most AMR codes is the finite
element method. Since most physics and materials science students have the least experience with finite
elements, this section provides a basic tutorial on finite element theory. Specifically, it introduces the the
Galerkin finite element approach and applies it in 1D and 2D to solve the Poisson equation. Extension
to 3D is strightforward and left to the reader.

A.5.1 The Diffusion Equation in 1D

Consider first a generic 1D reaction diffusion equation of the form

∂φ

∂t
= ∇(ε∇φ) + ρ(x) (A.61)

where here ε denotes the generalized diffusion constant. Consider a mesh as shown in Fig. A.3. The mesh
has m elements of width “l” denoted by ei, i = 1, . . . ,m. These constitute a mesh of nodes labeled by
“global node numbers” running from i = 1, . . . ,m+1. Each element has a set of “internal node numbers”
j = 1, . . . , n, where n is the number of nodes in an element.

To proceed, define a family of weight functions Wj(x) where j = 1, . . . , n. In addition, define a set
of so-called “shape functions” Nj(x) for j = 1, . . . , n, which are used to interpolate the field φ in the
element as

φ =

n∑
j=1

Nj(x)φj (A.62)

where φj is the field at the node labelled internally by j. In this simple one dimensional example being
considered here, n = 2 (see Fig A.3). The “weighted residual” approach to finite element analysis [55]
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Figure A.3: Global versus local coordinates in 1-D used in the finite element method.

forgoes the “exact” solution of Eq. (A.61) in each element, in favour of an approximate solution of the
equation when weighted by each of the functions Wj(x), j = 1, . . . , n.∫ il

(i−1)l
Wj(x)∂φ∂t −

∫ il
(i−1)l

Wj(x) ∂
∂x

(
ε(x)∂φ∂x

)
−

∫ il
(i−1)l

Wj(x) ρf (x) = 0, ∀ j = 1, 2, . . . , n (A.63)

In the Galerkin finite element approach, Wj(x) ≡ Nj(x) for j = 1 . . . n, that is, the weight functions are
the same as the shape functions. Equation (A.63) thus becomes∫ il

(i−1)l

Nj(x)

{
∂φ

∂t
−∇(ε∇φ)− ρf

}
dx = 0, ∀ j = 1, 2, . . . , n (A.64)

which can be written in a more compact form as∫ il

(i−1)l

[ N1(x)
N2(x)

]{∂φ
∂t
−∇(ε∇φ)− ρf

}
dx = 0 (A.65)

The interpolation of the field φ within the domain of the element, Eq. (A.62), can similarly be expressed
in this vector notation as

φ = [N1N2]
[
φ1
ei
φ2
ei

]
= [N ][φei ]

T (A.66)

where the shape functions N1 and N2 in the global coordinate frame are chosen for linear interpolation
as

N1(x) = l−[x−(i−1)l]
l (i− 1) < x < il i = 1, . . . ,m

N2(x) = x−(i−1)l
l (i− 1) < x < il i = 1, . . . ,m

(A.67)

where l is the size of the element.
In what follows, it will be convenient (particularly in 2D below) to work in a local coordinate system,

defined by a local variable ξ that spans the domain 0 < ξ < 1. The transformation from local coordinates
to global coordinate is made via

xglobal = lξ + (i− 1)l = (i− 1)l(1− ξ) + ilξ (A.68)
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The Jacobian of this transformation between the local and global coordinates is

J =
∂xglobal
∂ξ

= l (A.69)

In local coordinates, the shape functions thus become

N1(ξ) = (1− ξ) (A.70)

N2(ξ) = ξ (A.71)

Note that when the transformation from the local to the global coordinates uses the shape functions used
to interpolate the field within an element, the finite element formulation is called isoparametric.

Substituting Eq. (A.66) into Eq. (A.65) gives rise to a matrix equation satisfied by the nodal field
values in each element. Specifically, the first term in the matrix equation becomes∫ il

(i−1)l

[N ]T
d

dt
[N ][φei ]

Tdx =

∫ il

(i−1)l

[N ]T [N ]dx[φ̇ei ] =

∫ 1

0

[N(ξ)]T [N(ξ)]ldξ[ ˙φei ] (A.72)

where [φei ] is shorthand matrix notation for the nodal field values, i.e.,

[φei ] =
[ φ1

ei
φ2
ei

]
(A.73)

Note that the last equality is in element-local co-ordinates. The last integral is referred to as the ”mass
matrix”, defined by

[Cei ] ≡
∫ 1

0

[N(ξ)]T [N(ξ)]ldξ (A.74)

The second term in the matrix version of Eq. (A.65) gives rise to∫ il

(i−1)l

[N ]
∂

∂x

(
ε
∂

∂x
φ

)
dx =

∫ il

(i−1)l

(
[N ]T

∂

∂x

(
ε
∂

∂x
([N ][φei ]

T

))
dx (A.75)

Integrating by parts via
u = [N ] (A.76)

du = [Nx] (A.77)

v = ε
∂

∂x
([N ][φ]T ) (A.78)

dv =
∂

∂x

(
ε
∂

∂x
[N ][φ]T

)
dx, (A.79)

gives ∫ il

(i−1)l

{[N ]T
∂

∂x

(
ε(ξ)

∂

∂x

(
[N ][φei ]

T
))
}dx = [N ]T ε(ξ)

∂

∂x
[N ][φei ]

T
∣∣∣il
(i−1)l

−
∫ il

(i−1)l

ε(ξ)[Nx]T
∂

∂x
[N ][φei ]

Tdx (A.80)
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which is equivalently expressed in local coordinates as

1

l

∫ 1

0

[N ]T
∂

∂ξ

(
ε
∂

∂ξ
[N ][φei ]

T

)
dξ =

1

l
[N ]T ε

∂

∂ξ
[N ][φei ]

T
∣∣∣1
0

−
(1

l

∫ 1

0

∂

∂ξ
[N ]T ε

∂

∂ξ
[N ]ldξ

)
[φei ]

T (A.81)

The first term on the right hand side of Eq. (A.81) is a boundary term for all elements ei, i = 1, 2, 3, . . .m.
It is straightforward to see that all terms arising from adjoining elements interior to the domain 0 ≤ x ≤ L
cancel, except those from the two elements containing the left (x = 0) and right (x = L) domain
boundaries [55]. These two surviving terms, from elements e1 and em (m + 1 is the rightmost node in
the domain), are given by

[BC1]T = −[N(ξ = 0)]T
ε(x = 0)

l

∂

∂ξ
[N(ξ = 0)][φei ]

T , (A.82)

and

[BCm+1]T = [N(ξ = l)]T
ε(x = L)

l

∂

∂ξ
[N(ξ = l)][φen ]T (A.83)

Moreover, the second term on the right hand side of Eq. (A.81) can be written as

(1

l

∫ 1

0

ε(ξ)
∂

∂ξ
[N ]T

∂[N ]

∂ξ
dξ
)

[φei ]
T = [Kei ][φei ]

T (A.84)

where [Kei ] is referred to as the “stiffness matrix”. The final term in Eq. (A.65) is the source term. This
is written as ∫ il

(i−1)l

[N ]T ρf (x)dx =

∫ 1

0

[N ]T ρf (ξ)ldξ = [Rei ]
T (A.85)

Collecting the terms in Eqs. (A.74), (A.84) and (A.85) and the boundary condition in Eq. (A.81),
the following matrix equation is obtained for each element:

[Cei ][φ̇ei ] = [Kei ][φei ] + [Rei ]
T + [BCei ]

T (A.86)

where the boundary term [BCei ]
T is formally written for each element, but is only non-zero in the

elements e1 and em via Eqs. (A.82) and (A.83). To obtain the global solution valid simultaneously
at all the i = 1, . . . ,m + 1 nodes in the domain (the straight line in this 1-D example), all element
equations (A.86) must be assembled into one global matrix equation. This means that the corresponding
rows and columns in the matrices of Eq. (A.86) must first be indexed to their corresponding global node
number 5. Assembly then means that the entries of the n× n element matrix equations are dropped to
the corresponding entries of a global m+ 1×m+ 1 matrix. Assembly is expressed symbolically as(∑

ei

[Cei ]
)

[φ̇]T =
(∑

ei

[Kei ]
)

[φ]T +
∑
ei

[Rei ]
T +

∑
ei

[BCei ]
T (A.87)

5Each row and column represents an internal degree of freedom (node) of an element, which in turn can be mapped onto
a global node number.
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and gives a matrix equation whose solution yields [φ]T , the collection of field values at each node at time
t The global equation is compactly expressed as as

[C][φ̇] = [K][φ]T + [R]T + [BC]T (A.88)

The simplest time stepping algorithm to simulate the time derivative in Eq. (A.88) is an explicit
Euler time-stepping technique that is analogous to that described in section (A.1.2). Namely,

[C]
( [φn+1]− [φn]

∆t

)
= [K][φn]T + [R+BC]T (A.89)

which, after re-arranging, gives

[φn+1] = [φn] + ∆t[C]−1([K][φn]T + [R+BC]T ) (A.90)

The inversion of the [C] matrix is quite memory and CPU time consuming, especially for systems with
many nodes (e.g. m > 200 X 200). It is also potentially numerically unstable and should be avoided. To
overcome these numerical limitations, we use the approximation of consistent mass lumping [55]. This is a
phenomenological method that makes the mass matrix [C] diagonal by redistributing the length (“mass”)
of each element equally onto each node. Lumping of the mass matrix thus transforms

[Cei ]→
l

2

(
1 0
0 1

)
ei

(A.91)

The global mass matrix in lumped form in the global frame thus becomes

[C] =
l

2



1
2

. . .

2
. . .

2
1


(A.92)

in this one-dimensional case. It should be noted that for a regularly-spaced mesh, the use of a lumped
mass matrix in Eq. (A.90) leads to to the same result as that obtained using an explicit finite difference
scheme, discussed previously.

A.5.2 The 2D Poisson Equation

The method defined above can be generalized to 2D in a straightforward way. Consider a mesh of 4-
noded square elements as shown in Fig. (A.4). The 2D Galerkin finite element analysis begins with
the interpolating functions defined in the local coordinates of each element (See Fig. (A.4)). For linear
interpolation based on the four noded elements, the shape functions are given explicitly as

N1(ξ, η) =
1

4
(1− ξ)(1− η) (A.93)
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Figure A.4: Global versus local coordinates in 2D used in the finite element method.

N2(ξ, η) =
1

4
(1 + ξ)(1− η) (A.94)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η) (A.95)

N4(ξ, η) =
1

4
(1− ξ)(1 + η) (A.96)

The field being solved for is interpolated within the element as

φ = [N ][φei ]
T = [N1(ξ, η) N2(ξ, η) N3(ξ, η) N4(ξ, η)][φei ]

T (A.97)

In the isoparametric formulation, the transformation from internal to global coordinates is given by

X = N1(ξ, η)X1 +N2(ξ, η)X2 +N3(ξ, η)X3 +N4(ξ, η)X4 (A.98)

and

Y = N1(ξ, η)Y1 +N2(ξ, η)Y2 +N3(ξ, η)Y3 +N4(ξ, η)Y4 (A.99)

Where Xi and Yi are the x and y co-ordinates of the 4 nodes of the elements. The Jacobian of the
transformation is defined by the matrix

J =

(
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)
(A.100)

where

|J | = lxe lye
4

. (A.101)
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Through these definitions, integrals on the 2D domain Ωei of an element are transformed as∫ ∫
Ωei

f(x, y)dxdy =

∫ 1

−1

∫ 1

−1

f(x(ξ, η), y(ξ, η))|J |dξdη (A.102)

The Galerkin finite element residual of the 2D Poisson or diffusion type equation is written as∫ ∫
[N ]T

{
∂φ

∂t
−∇ (ε · ∇φ)− ρf

}
dxdy = 0 (A.103)

Working in local coordinates, the source term in Eq. (A.103) becomes∫ ∫
[N ]T ρfdxdy =

∫ 1

−1

∫ 1

−1

[N(ξ, η)]T ρ(ξ, η)|J |dξdη

=
lxly
4

∫ 1

−1

∫ 1

−1

[N(ξ, η)]T ρ(ξ, η)dξdη ≡ [R]Tei (A.104)

where the last equality assumes equal sized elements of dimensions lx × ly. Using Green’s theorem the
gradient terms in Eq. (A.103) becomes∫ ∫

Ωei

[N ]T∇ (ε · ∇φ) dxdy =

−
∫ ∫

Ωei

∂

∂x
([N ]T )ε

∂φ

∂x
dxdy +

∮
[N ]T ε

∂φ

∂x
dl −

∫ ∫
Ωei

∂

∂y
([N ]T )ε

∂φ

∂y
dxdy +

∮
[N ]T ε

∂φ

∂y
dl (A.105)

where the field within the element is interpolated by

φ = [N ][φei ]
T (A.106)

The partial derivatives are expressed in local element coordinates as

∂φ

∂ξ
= [N′ξ][φei ]

T =

[
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

]
×


φ1

φ2

φ3

φ4

 (A.107)

and

∂φ

∂η
= [N′η][φei ]

T =

[
∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

]
×


φ1

φ2

φ3

φ4

 (A.108)

Equations (A.107) and (A.108) are compactly expressed as

(
φ′ξ
φ′η

)
=

[
N1′ξ N2′ξ N3′ξ N4′ξ
N1′η N2′η N3′η N4′η

]
×


φ1

φ2

φ3

φ4

 (A.109)
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The partial derivatives in the global frame are related to those in the local frame by(
φ′x
φ′y

)
= J−1

[
N1′ξ N2′ξ N3′ξ N4′ξ
N1′η N2′η N3′η N4′η

]
[φei ]

T = [B][φei ]
T (A.110)

In terms of Eq. (A.110), the boundary terms in Eq. (A.105) become∮
[N ]T ε

∂φ

∂x
dl =

(∫ 1

−1

[N ]T ε(ξ, η)B(1 :)|J |dξ
)

[φei ]
T = [BCx]ei [φei ]

T (A.111)∮
[N ]T ε

∂φ

∂y
dl =

(∫ 1

−1

[N ]T ε(ξ, η)B(2 :)|J |dη
)

[φei ]
T = [BCy]ei [φei ]

T (A.112)

where B(1 :) and B(2:) denote the first and second rows of the matrix [B], respectively. The area integrals
in Eq. (A.105) are expressed as

I1 =
lxly
2

(∫ 1

−1

∫ 1

−1

[B(1, :)]T ε[B(1, :)]dξdη

)
[φei ]

T (A.113)

and

I2 =
lxly
2

(∫ 1

−1

∫ 1

−1

[B(2, :)]T ε[B(2, :)]dξdη

)
[φei ]

T (A.114)

which can be combined into one matrix as

I = I1 + I2

= −
(∫ 1

−1

∫ 1

−1

{
[B(1, :)]T [B(1, :)] + [B(2, :)]T [B(2, :)]

}
ε(ξ, η)|J |dξdη

)
[φei ]

T

≡ −[K]ei [φei ]
T , (A.115)

where [K]ei is defined as the stiffness matrix. To solve the complete problem, it is necessary, as in the 1D
case, to generate, or assemble a global matrix equation out of each of the element equations. The global
finite element matrix becomes(∑

ei

[C]ei

)
︸ ︷︷ ︸

[C]

[φ̇]T = −
(∑

ei

[K]ei

)
︸ ︷︷ ︸

[K]

[φ]T +
∑
ei

[R]Tei︸ ︷︷ ︸
[R]T

+
∑
ei

(
[BCx]ei + [BCy]ei

)
[φ]T︸ ︷︷ ︸

[BC]T

(A.116)

An explicit formulation for time integration of Eq. (A.116) is given by

[φn+1] = [φn] + ∆t[C]−1
(
−[K][φn]T + [R]T + [BC]T

)
(A.117)

Using the same principle of consistent mass lumping as in the 1D case, the corresponding 2D lumped
mass matrix for each element becomes

[Cei ] =
lxly
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


ei

(A.118)

The global mass matrix in the global frame is assembled in the usual way. The above formulation can
also be used to solve the Poisson Equation, in which case time in Eq. (A.117) is fictitious. It serves as an
iteration variable in a Jacobi iteration scheme for Eq. (A.117). At convergence (φn+1 = φn), the solution
is that of the Poisson Equation.
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Appendix B

Miscellaneous Derivations

B.1 Structure Factor: Section (4.6.1)

The structure factor is formally defined by

S(~q, t) =

∫
d~rei~q·~r〈〈φ(~r′, t)φ(~r − ~r′, t)〉〉 (B.1)

where φ(~r, t) is the order parameter and the inner double angled brackets represent volume averages over

all space of the variable ~r′ while the outer angled brackets represent averaging over an infinite number of
configurations of the system. Representing φ(~r, t) by it Fourier representation

φ(~r, t) =

∫
d~kφ~k(t)e−

~k·~r (B.2)

Eq. (B.1) becomes,

S(~q, t) =

∫
d~r〈〈

(∫
d~kφ~ke

−i~k·~r′
)(∫

d~k′φ~k′e
−i~k′·(~r−~r′)

)
〉〉ei~q·~r

= 〈〈
∫ ∫

d~kd~k′φ~kφ~k′e
−i(~k−~k′)·~r′

(∫
d~re−i(

~k′−~q)·~r
)
〉〉 (B.3)

Where it has been assumed that the order of the integrations and averages (which is also an integration)
can be changed. Using the definition of the delta function of the form∫

d~re−i(
~k′−~q)·~r ≡ δ(~k′ − ~q) (B.4)

makes it possible to eliminate the ~k′ integral in Eq. (B.3), and making the replacement ~k′ = ~q. This
gives,

S(~q, t) = 〈〈
∫ ∫

d~kφ~kφ~qe
−i(~k−~q)·~r′〉〉 (B.5)
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Implementing the inner angled brackets in Eq. (B.5) as a spatial average over ~r′ finally gives,

S(~q, t) = 〈
∫ ∫

d~kφ~kφ~q

(∫
d~r′e−i(

~k−~q)·~r′
)
〉

= 〈|φ−~q|2〉 (B.6)

where the expression in large round brackets in Eq. (B.5) is identified with δ(~k − ~q). Recall, once again,
that the remaining angled brackets in Eq (B.6) denote different realization of the ~q mode of the square
of the Fourier transform of the order parameter.

B.2 Transformations from Cartesian to Curvilinear Co-ordinates:
Section (C.2)

This section derives the transformation of the ∇ operator to its counterpart in the curvilinear coordinate
system used in the matched asymptotic analysis of section (C) and elsewhere in the text. The starting
point is Fig. (B.1) which illustrates how to represent a point P with cartesian coordinate (x, y) in curvi-
linear coordinates (u, s) which are local to the interface. In the figure, n̂ is a unit normal to the interface
at point Q, while τ̂ is a unit tangent to the interface at the point Q. The variable θ measures the angle
between the x-axis and a line parallel to τ̂ , as shown in Fig. (B.1). The line P Q is parallel to n̂ and
has length u. The distance s measures the arclength along the interface, from a reference point (star

symbol) to point Q. The vector ~R(s) is the displacement from the origin to the point Q. It is clear that

the quantities n̂, τ̂ , ~R and θ associated with the point Q all depend on the arclength s.
In terms of the variables defined in Fig. (B.1), the cartesian coordinates of the unit vectors n̂ and τ̂

are given by

n̂ = (sin θ,− cos θ)

τ̂ = −dn̂
dθ

= (− cos θ,− sin θ) (B.7)

The coordinates of P are thus expressed in terms of u and θ as

x = = Rx(s) + un̂x = Rx(s) + u sin θ

y = Ry(s) + un̂y = Ry(s)− u cos θ (B.8)

Moreover, θ and s are related via the local interface curvature κ at Q according to

κ = −dθ
ds

(B.9)

Using the above definition, the transformation of quantities between (x, y) and (u, s) can now be made.
Writing a the order parameter as φ(s(x, y), u(x, y)) and using the chain rule gives ∂φ

∂x

∂φ
∂y

 =

 ∂s
∂x

∂u
∂x

∂s
∂y

∂u
∂y


︸ ︷︷ ︸

J

 ∂φ
∂s

∂φ
∂u

 (B.10)

214



Figure B.1: Representation of a point P with cartesian coordinates (x, y) in curvi-linear co-ordiates (u, s)
which are attached to the interface represented by the green curve. The vector n̂ is the unit normal to
the interface at point Q and u is the length of QP (dotted line), which is parallel to n̂. The vector τ̂ is
perpendicular to n̂ and tangential to the interface at point Q. The distance s measures arclength along
the interface, from a reference point (star symbol) to Q. The variable θ is the angle between the x-axis
and a line parallel to τ̂ . Other details described in the text

Where J is the Jacobian matrix of the transformation from (u, s) derivatives to (x, y) derivatives. The
inverse transformation is similarly defined via J−1 as ∂φ

∂s

∂φ
∂u

 =

 ∂x
∂s

∂y
∂s

∂x
∂u

∂y
∂u


︸ ︷︷ ︸

J−1

 ∂φ
∂x

∂φ
∂y

 (B.11)

Using Eq. (B.8) and (B.9) the partials dx and dy with respect to ds and du are found to be

dx =

[
d~Rx
ds
− uκ cos θ

]
ds+ sin θ du

dy =

[
d~Ry
ds
− uκ sin θ

]
ds− cos θ du (B.12)

Using Eqs. (B.12) gives

J−1 =

 d~Rx
ds −uκ cos θ

d~Ry
ds −uκ sin θ

sin θ − cos θ

 (B.13)

It will be noted that d~R/ds = τ̂ . This is easy to see in the special case where the vector ~R rotates in
a circle as a constant angular velocity. The more general case follows analogously. Using this result,
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Inverting J−1, recalling that that τ̂ has unit length and using Eq. (B.10) gives, ∂
∂x

∂
∂y

 = − 1

(1 + uκ)

 cos θ ∂∂s + {τ̂y − uκ sin θ} ∂
∂u

sin θ ∂∂s − {τ̂x − uκ cos θ} ∂
∂u

 (B.14)

which, in compact notation, becomes

∇ = n̂
∂

∂u
+

1

1 + uκ
τ̂
∂

∂s
(B.15)

The analysis of Appendix (C) requires Eq. (B.15) to be applied to the case of a vector function
~f = fn̂(u, s)n̂+ fτ̂ (u, s)τ̂ . In that case, Eq. (B.15) can be written as

∇ · ~f = ∂u

(
n̂ · ~f

)
+

1

1 + uκ

{
∂s

(
τ̂ · ~f

)
− ~f · ∂sτ̂

}
= ∂u

(
n̂ · ~f

)
+

1

1 + uκ

{
∂s

(
τ̂ · ~f

)
+ κ n̂ · ~f

}
(B.16)

where ∂sτ̂ = ∂sθ ∂θ τ̂ = −κ n̂ has been used in the second line of Eq. (B.16). This equation is useful in

deriving Eqs. (C.9) and (C.10) by replacing ~f by ∇ and q∇, respectively.
A useful transformation of Eq. (B.16) is obtained by scaling u according to ξ = u/Wφ, s by σ = s/Wφ/ε

and performing the expansion, (1 + uκ)−1 = 1 − εξκ̄ + · · · (where κ̄ = (Wφ/ε)κ, see Eqs. (C.36)). This
gives

∇ · ~f =
1

Wφ

[
∂ξ

(
n̂ · ~f

)
+ ε
{
∂σ

(
τ̂ · ~f

)
+ κ̄ n̂ · ~f

}]
+O(ε2) (B.17)

It is also useful to express the quantity ∇φ/|∇φ| in terms of n̂. Starting with Eq. (B.15), re-scaling
distances as was done above and once again expanding (1 + εξκ̄) gives

− ∇φ
|∇φ|

= n̂(1 +O(ε2)) + τ̂O(ε) (B.18)

where the minus sign is introduced so that the normal vector points from solid to liquid in the convention
when φs > φL.

B.3 Newton’s Method for Non-Linear Algebraic Equations: Sec-
tion (6.9.5)

Let f(x) be come non-liner function of x. The simplest way to solve the equation

f(x) = 0 (B.19)

is by Newton’s iteration method. The idea is to make a first guess at the solution, called xn. Assuming
xn is sufficiently close to the actual solution, then a first order Taylor expansion of f(x) about x = xn
can be used to estimate the actual solution by finding where the linear approximation to f(x) is zero.
Specifically, solving f(xn+1) = xn + f ′(xn)(xn+1 − xn) = 0 yields xn+1 = xn − f(xn)/f ′(nn) ≡ G(xn),
where the prime denotes differentiation. Substituting xn+1 back on the right hand side of the previous
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equation gives gives a refined estimate of the actual solution, i.e., xn+2 = G(xn+1). This procedure is
repeated until the estimates stop changing, to some accuracy.

The extension of Newton’s method to two non-linear equations

f1(x, y) = 0

f2(x, y) = 0 (B.20)

is precisely analogous to the 1D case. Let the initial guess of the solution be ~xn = (xn.yn). The functions
f1(x, y) and f2(x, y) are expanded to linear order about (xn, yn), yielding,

f1(xn, yn) + ∂xf1(xn, yn)(xn+1 − xn) + ∂yf1(xn, yn)(yn+1 − yn)) = 0

f2(xn, yn) + ∂xf2(xn, yn)(xn+1 − xn) + ∂yf2(xn, yn)(yn+1 − yn)) = 0 (B.21)

Solving Eqs. (B.21) gives xn+1

yn+1

 =

 xn

yn

+
1

W (xn, yn)

 ∂yf2(xn, yn) − ∂yf1(xn, yn)

∂xf2(xn, yn) − ∂xf1(xn, yn)

 f1(xn, yn)

f2(xn, yn)

 (B.22)

where W (xn, yn) ≡ ∂xf1(xn, yn) ∂yf2(xn, yn)−∂yf1(xn, yn) ∂xf2(xn, yn). Eq. (B.22) is of the form ~xn+1 =
G( ~xn), which can be iterated until the iterates stop changing, to a sufficient accuracy.
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Appendix C

Thin-Interface Limit of a Binary
Alloy Phase Field Model

This appendix derives the thin interface limit of the ”model C” type phase field models, comprising one
order parameter equation coupled to one diffusion equation. This notation is based on the alloy model
discussed in Chapter (6), altough it is adaptable to that model C describing solidificaiton of a pure
material also, as studied in Chapter (5).

The following analysis derives the behavior of a generalized alloy phase field model in the limit when
the interface width Wφ is formally smaller than the capillary length do. Solutions are expanded to second
order accuracy in the small parameter ε = Wφ/do. The effective sharp interface relations derived in
the analysis still hold for diffuse interfaces (i.e. for Wφ ∼ do) so long as the thermodynamic driving
force that drives microsstructure formation is small. The analysis treats an isotropic interface energy for
simplicity. Because it is performed in interface local coordinates, the results of the isotropic case carry
over essentially unchanged to anisotropic case. The calculations of this appendix follow the standard
matched asymptotic analysis methods [159] and genralize the approach first developed by Almgren [10]
and later extended by Karma and co workers [114, 113, 59] to the case of a generalized alloy free energy
and to two-sided diffusion.

Readers wishing only a summary of the results of part (1) discussed above should become familiar
with section (C.1), which defines the form of phase field models being studied, and jump to section (C.8),
which summarizes the main results of the main asymptotic analysis, covered in sections (C.2)-(C.7).
Section (C.9) covers part (2) discussed above.

C.1 Phase Field Model

The alloy free energy considered here considers one order parameter (or phase field) φ, an impurity
concentration c and a temperature T , considered isothermal at present. The paradigm alloy phase field
model free energy considered is of the form

F =

∫
V

{
|εc∇c|2

2
+
|εφ∇φ|2

2
+ wg(φ) + f̄mix

AB (φ, c, T )

}
dV (C.1)
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where εφ ≡
√
wWφ and εc ≡

√
wWc are constants that set the scale of the solid-liquid interface and

compositional domain interface energy, respectively. Their units are [J/m]1/2. The constant w is the
nucleation barrier between the solid and liquid phase of component A, and has units of [J/m3]. The
constants Wφ and Wc thus set the length scale of the solid-liquid interface and a compositional boundary.
The inverse of w is also defined here by w ≡ 1/λ. The function g(φ) is the double-well potential, which
models the solid-liquid free energy of the component A at its melting temperature Tm. It has two minima
for φs and φL, corresponding to the order parameters for the solid and liquid phases, respectively, and a
barrier between the two phases . The function f̄mix

AB (φ, c, T ) is the bulk free energy of mixing of the alloy,
and determined the phase diagram of the alloy. While not strictly necessary, it will be useful to assume
that f̄mix

AB (φ, c, T ) is minimized in φ-space by φs and φL.
Equations of motion for the fields φ and c are given by

τ
∂φ

∂t
= W 2

φ∇2φ− dg

dφ
− ∂fAB

∂φ

∂c

∂t
= ∇ · {M(φ, c)∇µ } (C.2)

µ =
δF

δc
=
∂f̄mix

AB

∂c
− ε2c∇2c

where the definition
fAB ≡ f̄mix

AB /w (C.3)

has been made, while τ ≡ 1/(wM) controls the time of attachment of atoms to the solid interface from
the liquid, governed by the atomic mobility M . The solute mobility function M(φ, c) is given by

M(φ, c) = DLq(φ, c)

q(φ, c) ≡ Q(φ)/
∂2f̄mix

AB

∂c2
(C.4)

where the function Q(φ) is an interpolation function that is to be used to interpolate the diffusion through
the solid-liquid interface. Its has limits Q(φ → φL) = 1 and Q(φ → φs) = Ds/DL where Ds is the
solid phase impurity diffusion constant. For example, for the regular solution model of a binary alloy,
∂2f̄mix

AB /∂c2 ≡ ∂µbulk/∂c = (RTm/vo)/c(1−c), where νo, R and Tm are the molar volume of the material,
the natural gas constant and the melting point of A, respectively. Through Eq. (C.4) the solute mobility
in the liquid phase is identified as

ML = DLq(φ = φL, c = ceq
L ) = DL/

(
∂µ

∂c

)
ceq
L

(C.5)

C.2 Curvi-linear Coordinate Transformations

The phase field equations are considered here with respect to a set of curvi-linear co-ordinates, denoted
(u, s) and illustrated in Fig. (C.1). In this coordinate system, distances are measured with respect to a
curvilinear co-ordinate system which is anchored to a position along the solid-liquid interface, where the
interface is defined by the locus of points satisfying

I = {(x, y)|φ(x, y) = φc} (C.6)
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where φc is a constant 1. The co-ordinate u in this system measures the distance from the interface to
a point (x, y), along a line normal to the interface. The co-ordinate s measures the arclength from a
reference position on the interface to the position on the interface coinciding with the normal direction
along which u is measured.

Figure C.1: Schematic of the (u, s) co-ordinates relative to an orthogonal co-ordinate system anchored
onto the interface. The co-ordnate u measures distances normal to the interface while s measure the
arclength long the interface. The vector ~v denotes the velocity of the interface at the point indicated by
the dot, which is situated at co-ordinates (0, s). See also Fig. (B.1) for further details.

Transforming to a co-ordinate system moving with a velocity ~v transforms the time derivative accord-
ing to

∂

∂t
→ ∂

∂t
− ~v · ∇ (C.7)

where ~v is the velocity vector at the reference point on the interface. As shown in section (B.2), in the
(u, s) co-ordinaes Eq. (C.7) becomes

∂

∂t
→ ∂

∂t
− (−utn̂− stτ̂) ·

(
n̂
∂

∂u
+

1

1 + uκ
τ̂
∂

∂s

)
≈ ∂

∂t
− vn

∂

∂u
+ s,t

∂

∂s
(C.8)

where −ut(≡ vn) and −s,t(≡ vt) define the components of ~v projected onto the normal n̂ and transverse
(s) directions, respectively, and κ is the local interface curvature at the point (0, s) on the interface. (It
is noted that the notation ”f,x” will often be used to denote partial differentiation of a function f with
respect to x). The (1 + uκ) term in the second equality was dropped as it it will be seen later to be of
lower order than required in this analysis. 2

The ∇ and ∇2 operators are similarly be transformed into (u, s) co-ordinates. Applying Eq. (B.15)
derived in section (B.2), it is found –after some algebrea– that the Laplacian operator (∇2) becomes,

∇2 → ∂2

∂2u
+

κ

(1 + uκ)

∂

∂u
+

1

(1 + uκ)2

∂2

∂s2
− u

(1 + uκ)3

∂κ

∂s

∂

∂s
(C.9)

1It should be noted the location of the interface defined trough φ(x, y) is not unique. The most consistent choice of φc is
that which defines the Gibb’s dividing surface. In this calculation φc = 0, a choice motivated by the lowest order solution
of the order parameter.

2This will become clearer in section (C.6). When the re-scaled phase field equations are expanded in a small parameter
ε (defined below) time derivatives become of order ε2, while the expression (1 + uκ)−1 ≈ 1 + O(ε) (e.g. see Eqs. (C.36)),
making any contribution from the uκ term of order ε3, which is not being considered here.
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while the ”sandwiched” ∇ operator ∇ · (q∇), arising from the diffusion equation, becomes

∇ · (q∇)→ ∂

∂u

(
q
∂

∂u

)
+

qκ

(1 + uκ)

∂

∂u
+

1

(1 + uκ)2

∂

∂s

(
q
∂

∂s

)
− uq

(1 + uκ)3

∂κ

∂s

∂

∂s
(C.10)

C.3 Length and Time Scales

As discussed in the text, matched asymptotic analysis is a multiple scales analysis that matches solutions
of the phase field equations at distances much smaller than the interface width to those far outside the
interface. Before proceeding, it is instructive to define some useful expressions and the characteristic
length and time scales that will be used to non-dimenionalise the phase field equations in the follwoing
analysis.

The ”inner region” of the phase field model is defined by the length scale Wφ, the interface width.
The ”outer region” of the model is defined by scales much larger than that of the capillary length do. In
terms of phase field parameters, the capillary length do will turn out to scale with the interface width
Wφ and the nucleation barrier 1/λ. It is thus expressed as

do ≡
Wφ

αλ
(C.11)

where α is a constant that will be determined later in the analysis 3.
The asymptotic analysis will be done by solving the field equations order by order (to second order) in

the small parameter defined by ε ≡ Wφvs/DL � 1, where vs is a characteristic velocity. In this analysis
vs = DL/do is the characteristic speed of diffusion across the capillary length scale set by do [59]. These
definitions imply that ε = Wφ/do. It will also be assumed that the interface width is small compared
to the local interface curvature of the interface. Specifically, in most practical situations the radius of
curvature of the interface R ∼ 1/κ is much larger than the capillary length do. This is leads to the
condition Wφκ� 1. Finally, the characteristic time scale with which time in the model will be re-scaled,
both in inner and outer domain is tc = DL/v

2
s . To summarize,

inner region : x � Wφ

outer region : x � DL/vs = do

characteristic time : tc = DL/v
2
s = do/vs

expansion parameter : ε = Wφvs/DL = Wφ/do � 1

curvature : Wφ κ ∼ ε (C.12)

From the definitions in Eqs. (C.12), the free energy of mixing fAB can be re-scaled according to

fAB ≡
f̄mix

AB

w
= ε

f̄mix
AB

α
= εf (C.13)

where the definition
f(φ, c) ≡ f̄mix

AB (φ, c)/α (C.14)

3It will be determined by comparing the effective phase field capillary length, which is derived from the final result in
Eq. (C.130) with Eq. (C.11). For example, for a binary alloy, Eq. (6.73) and shows that α ∝ RT/Ω, where here Ω is the
molar volume of the material.
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in the last equality has been made for convenience of notation in the algebra that follows.
It should be noted that while the analysis presented herein is in the small parameter ε = Wφ/do,

the results derived will be valid so long as εf � 1. This implies that Wφ can be of order do so long
as the thermodynamic driving force f is small or if the microstrcuture growth rates are small. This is
motivated empirically by noting, through Eq. (C.13), that the coupling of the φ and c dissapears when
ε → 0, i.e. the classical sharp interface limit, or when |f | → 0. The latter situation corresponds to very
small interface velocities, vn. Examination of the final results of this analysis, summaried in section (C.8),
show that the vn → 0 limit leads, to lowest order, to essentially the same effective sharp interface model
as the Wφ/do → 0 limit (subject always to the Eq. (C.11) and the condition Wφκ� 1).

C.4 Matching Conditions Between Outer and Inner Solutions

After solving the phase field equations in the inner and outer regions, their respective solutions will be
matched in the intermediate region. This processes will make it possible to extract the Gibb’s-Thomson
and flux conservation equations acting at an effective solid-liquid interface of the corresponding phase
phase field model. The solutions in the outer regions are denoted by φo while in the inner region they are
denoted by φi. It will be assumed that the solutions of the outer region can be expressed in an asymptotic
series as

φo = φo0 + εφo1 + ε2φo2 + · · ·
co = co0 + εco1 + ε2co2 + · · ·
µo = µo0 + εµo1 + ε2µo2 + · · · (C.15)

and while the solution in inner region are given by

φin = φin
0 + εφin

1 + ε2φin
o + · · ·

cin = cin0 + εcin1 + ε2cin2 + · · ·
µin = µin

0 + εµin
1 + ε2µin

2 + · · ·
vn = vn0 + εvn1 + ε2vn2 + · · · (C.16)

where vn is the normal velocity, which will play an important role when analyzing the inner behaviour
of the phase field equations.

The inner and outer solutions are matched by comparing the inner solutions in the limit of ξ ≡
u/Wφ →∞ with the outer solutions in the limit in the limit η = u/(DL/vs)→ 0 [10] . This leads to the
following matching conditions.
For the concentration field c:

lim
ξ→±∞

cin0 (ξ) = lim
η→0±

co0(η) = co0(0±)

lim
ξ→±∞

cin1 (ξ) = lim
η→0±

(
co1(η) +

∂co0(η)

∂η
ξ

)
= co1(0±) +

∂co0(0±)

∂η
ξ

lim
ξ→±∞

∂cin2 (ξ)

∂ξ
= lim

η→0±

(
∂co1(η)

∂η
+
∂2co0(η)

∂η2
ξ

)
=
∂co1(0±)

∂η
+
∂2co0(0±)

∂η2
ξ (C.17)

For the chemical potential µ:

lim
ξ→±∞

µin
0 (ξ) = lim

η→0±
µo0(η) = µo0(0±)
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lim
ξ→±∞

µin
1 (ξ) = lim

η→0±

(
µo1(η) +

∂µo0(η)

∂η
ξ

)
= µo1(0±) +

∂µo0(0±)

∂η
ξ

lim
ξ→±∞

∂µin
2 (ξ)

∂ξ
= lim

η→0±

(
∂µo1(η)

∂η
+
∂2µo0(η)

∂η2
ξ

)
=
∂µo1(0±)

∂η
+
∂2µo0(0±)

∂η2
ξ (C.18)

For the phase field φ:

lim
ξ→−∞

φin
0 (ξ) = φs = lim

η→0+
φo0(η)

lim
ξ→∞

φin
0 (ξ) = φL = lim

η→0−
φo0(η)

lim
ξ→±∞

φin
j (ξ) = 0, ∀ j = 1, 2, 3, · · ·

φoj(η) = 0, ∀ j = 1, 2, 3, · · · (C.19)

where φs and φL denote the steady state order parameter of the bulk solid and liquid. These are
determined by the specific form of the free energy. The simplest free energies to work with are such that
bulk phae field values are uniform constants.

Velocity is dependent only of the arclength s and does not require matching in the transverse co-
ordinate.

C.5 Outer Equations Satisfied by Phase Field Model

To examine the phase field equations Eqs. (C.2) in the outer region, the following re-scaling of space and
time are made: η = vsu/DL, s̄ = vss/DL and t̄ = t/(DL/v

2
s). This leads to the following dimensionless

version of Eqs. (C.2),

D̄ε2
∂φ

∂t̄
= ε2∇̄2φ− dg

dφ
− ε∂f

∂φ
(C.20)

∂c

∂t̄
= ∇̄ ·

{
q(φ, c)∇̄µ

}
(C.21)

where D̄ = DLτ/W
2
φ and ∇̄ denotes gradients with respect to dimensionless length scales.

The next step is to substitute Eqs. (C.15) into Eqs. (C.20) and (C.21) and expand all non-linear terms
up order ε2. This is referred to a ”second order expansion” in ε. Expanding first the phase field equation
Eq. (C.20) to second order gives

D̄ε2
∂φo0
∂t̄

= ε2∇̄2φo0 − g′(φo0)

− ε
(
f,φ(φo0, c

o
0) + g

′′
(φo0)φo1

)
− ε2

(
f,φφ(φo0, c

o
0)φo1 + f,φc(φ

o
0, c

o
0)co1 + g

′′
(φo0)φo2 + g

′′′
(φo0) (φo1)2/2

)
− · · · (C.22)

To make the notation compact, ordinary derivatives with respect to the order parameter are denoted by
primes, while mixed partial derivatives are denoted with commas. Thus f,φc denotes partial differentiation
of f with respect to φ, then c. The idea behind matched asymptotic analysis is to separate Eq. (C.22)
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into a series of separate equations, each of which is contains terms of the same order in ε. In this case
the equations at each order are given by

O(1) : g′(φo0) = 0 (C.23)

O(ε) : f,φ(φo0, c
o
0) + g

′′
(φo0)φo1 = 0 (C.24)

O(ε2) : D̄
∂φo0
∂t̄
− ∇̄2φo0 +

(
f,φφ(φo0, c

o
0)φo1 + f,φc(φ

o
0, c

o
0)co1 + g

′′
(φo0)φo2 + g

′′′
(φo0) (φo1)2/2

)
=0 (C.25)

The solutions of Eq. (C.23) define the minima of the double well potential function g(φ), which denote
the equilibrium values of the order parameter in the liquid (φo0 = φs) and the solid (φo0 = φL). These
values must remain constant in the solid and liquid far from the interface since no solidification takes
place there. The bulk free energy of mixing will be assumed to be such that the order parameter does not
change far away from the interface where no phase change is occurring, regardless of the concentration.
This requirement is expressed as f,φ(φo0 ≡ {φs, φL}, co0) = 0, which implies that φo1 = 0 in Eq. (C.24).
It is similarly required that the far field chemical potential be independent of the order parameter, i.e.
f,φc(φ

o
0 ≡ {φs, φL}, co0) = f,cφ(φo0 ≡ {φs, φL}, co0) = 0. This leads to φo2 = 0 in Eq. (C.25). To summarize,

the stated constraints on f(φ, c) lead to:

φo0 = φL, φs η → ±∞ (C.26)

φo1 = 0 (C.27)

φo2 = 0 (C.28)

The far field values φL and φs will be determined below.
Expanding the concentration equation Eq. (C.21) to second order gives the same diffusion equation

to all orders in ε, namely,
∂coj
∂t̄

= ∇̄ ·
{
q(φo0, c

o
0)∇̄µoj

}
(C.29)

Putting this back in dimensional units (using the scaling for t̄ and η given at the beginning of this
subsection) and using the fact that Q(φo0 = φL) = 1 and Q(φo0 = φs) = Ds/DL gives

∂coj
∂t

= ∇ ·
{
ML,s∇µoj

}
, ∀ j = 0, 1, 2, · · · (C.30)

i.e. the usual Fick’s law of diffusion in either phase. To summarize, the outer solutions of the phase field
Eqs. (C.2) describe standard solute diffusion in the bulk solid and liquid phases and reduce to a constant
order parameter far from the interface in either phase.

C.6 Inner Expansion of Phase Field Equations

To perform the inner expansion of Eqs. (C.2), it is instructive to transform these into the curvilinear
co-ordinates defied in section (C.2). Substituting Eqs. (C.8), (C.9) and (C.10) into Eqs. (C.2) gives,

τ

(
∂φ

∂t
− vn

∂φ

∂u
+ s,t

∂φ

∂s

)
= W 2

φ

(
∂2φ

∂u2
+

κ

(1 + uκ)

∂φ

∂u
+

1

(1 + uκ)2

∂2φ

∂s2
− uκ,s

(1 + uκ)3

∂φ

∂s

)
(C.31)

− dg(φ)

dφ
− εdf(φ, c)

dφ
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∂c

∂t
− vn

∂c

∂u
+ s,t

∂c

∂s
=

∂

∂u

(
q
∂µ

∂u

)
+

qκ

(1 + uκ)

∂µ

∂u
+

1

(1 + uκ)2

∂

∂s

(
q
∂µ

∂s

)
− qu

(1 + uκ)3

∂κ

∂s

∂µ

∂s
(C.32)

To examine the phase field equations Eqs. (C.31) and (C.32) in the inner region, the following re-
scaling of space and time are made: ξ = u/Wφ, t̄ = t/(DL/v

2
s). Distance along the arclength is re-scaled

according to σ = s/(DL/vs), since variations along the interface should be more gradual than through
the model interface. The dimensionless normal velocity is likewise defined by v̄n = vn/vs. These scalings
lead to the following relations between some of the other variables which will be used often below in going
through the derivations:

s =
Wφ

ε
σ

κ =
∂θ

∂s
=

ε

Wφ
κ̄

uκ = ε ξ κ̄

uκ,s
∂

∂s
≡ u

∂κ

∂s

∂

∂s
=

ε3

W 2
φ

ξ κ̄,σ
∂

∂σ
(C.33)

where κ̄ is the dimensionless curvature. Using Eqs. (C.33) to re-scale variables in Eqs. (C.31) and (C.32)
gives (retaining terms only to second order in ε),

D̄ε2
∂φ

∂t̄
− D̄εv̄n

∂φ

∂ξ
+ D̄ε2σ,t̄

∂φ

∂σ
=

(
∂2φ

∂ξ2
+

εκ̄

(1 + εξκ̄)

∂φ

∂ξ
+

ε2

(1 + εξκ̄)2

∂2φ

∂σ2

)
(C.34)

− dg(φ)

dφ
− εdf(φ, c)

dφ

ε2
∂c

∂t̄
− εv̄n

∂c

∂ξ
+ ε2σ,t̄

∂c

∂σ
=

∂

∂ξ

(
q
∂µ

∂ξ

)
+

εqκ̄

(1 + εξκ̄)

∂µ

∂ξ
+

ε2

(1 + εξκ̄)2

∂

∂σ

(
q
∂µ

∂σ

)
(C.35)

where, again, the a subscript preceded by a comma denotes differentiation with respect to that variable.
Note that the last terms in the laplacian expansions of Eqs. (C.9) and (C.10) have been dropped in
Eq. (C.34) and Eq. (C.35), respectively, as they are of order ε3 in the re-scaled co-ordinates.

Further simplification can be make to the inner equations by expanding some of the non-linear term
in Eqs. (C.34) and (C.35) to order O(ε2). Specifically,

εκ̄

1 + εξκ̄
≈ εκ̄− ε2ξκ̄2

ε2

(1 + εξκ̄)
2 ≈ ε2 (1− 2εξκ̄) ≈ ε2 (C.36)

This gives,

D̄ε2
∂φ

∂t̄
− D̄εv̄n

∂φ

∂ξ
+ D̄ε2σ,t̄

∂φ

∂σ
=

(
∂2φ

∂ξ2
+ εκ̄

∂φ

∂ξ
− ε2ξκ̄2 ∂φ

∂ξ
+ ε2

∂2φ

∂σ2

)
(C.37)

− dg(φ)

dφ
− εdf(φ, c)

dφ
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ε2
∂c

∂t̄
− εv̄n

∂c

∂ξ
+ ε2σ,t̄

∂c

∂σ
=

∂

∂ξ

(
q
∂µ

∂ξ

)
+ εqκ̄

∂µ

∂ξ
− ε2ξκ̄2q

∂µ

∂ξ
+ ε2

∂

∂σ

(
q
∂µ

∂σ

)
(C.38)

The next step arriving at the order by order inner equations for the phase and concentration equations
is to; (1) substitute Eqs. (C.16) into the phase and concentration evolution equations (C.37) and (C.38);
(2) expand the remaining non-lnear terms (q(φ, c), g(φ) and f(φ, c)) to order O(ε2); (3) collect terms,
order by order in ε, into separate equations. The second order expansion of g,φ(φ) + εf,φ(φ, c) is given by

−∂g(φin
0 + δφin)

∂φ
− ε

∂f(φin
0 + δφin, cin0 + δcin)

∂φ
= −g′(φo0)− ε

(
f,φ(φo0, c

o
0) + g

′′
(φo0)φo1

)
− ε2

(
f,φφ(φo0, c

o
0)φo1 + f,φc(φ

o
0, c

o
0)co1 + g

′′
(φo0)φo2 + g

′′′
(φo0) (φo1)2/2

)
(C.39)

where δφin = εφin
1 + εφin

2 + · · · and δcin = εcin1 + εcin2 + · · ·. Substituting Eq. (C.39) into Eqs. (C.37)
and substituting the expansions (C.16) into Eqs. (C.37) and (C.38) gives two lengthy equations, each of
which has terms of different powers of ε. Equations for φin and cin are given, order by order, as follows:

C.6.1 Inner Expansion of phase field equation C.37 at different orders

O(1) :
∂2φin

0

∂ξ2
− g

′
(φin

0 ) = 0 (C.40)

O(ε) :
∂2φin

1

∂ξ2
− g

′′
(φin

0 )φin
1 = −(D̄v̄0 + κ̄)

∂φin
0

∂ξ
+ f,φ(φin

0 , c
in
0 ) (C.41)

O(ε2) :
∂2φin

2

∂ξ2
− g

′′
(φin

0 )φin
2 = D̄

∂φin
0

∂t̄
− ∂2φin

0

∂σ2
− (D̄v̄0 + κ̄)

∂φin
1

∂ξ
− (D̄v̄1 − ξκ̄2)

∂φin
0

∂ξ
(C.42)

+f,φφ(φin
0 , c

in
0 )φin

1 + g
′′′

(φin
0 )

(φin
1 )2

2
+ f,φc(φ

in
0 , c

in
0 )cin1

Note that the subscript ”n” (for normal) has been dropped from the velocity normal to the interface, vn,
to simplify notation.

C.6.2 Inner expansion of concentration equation C.38 at different orders

O(1) :
∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

0

∂ξ

)
= 0 (C.43)

O(ε) :
∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

1

∂ξ

)
=− ∂

∂ξ

({
q,φ(φin

0 , c
in
0 )φin

1 +q,c(φ
in
0 , c

in
0 )cin1

} ∂µin
0

∂ξ

)
−v̄0

∂cin0
∂ξ

(C.44)

−κ̄q(φin
0 , c

in
0 )
∂µin

0

∂ξ

O(ε2) :
∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

2

∂ξ

)
=
∂cin0
∂t̄
− v̄1

∂cin0
∂ξ

+ σ,t̄
∂cin0
∂σ

+ ξκ̄2q(φin
0 , c

in
0 )
∂µin

0

∂ξ
− v̄0

∂cin1
∂ξ

(C.45)

−κ̄q(φin
0 , c

in
0 )
∂µin

1

∂ξ
− ∂

∂σ

(
q(φin

0 , c
in
0 )
∂µin

0

∂σ

)
− κ̄

{
q,φ(φin

0 , c
in
0 )φin

1 + q,c(φ
in
0 , c

in
0 )cin1

} ∂µin
0

∂ξ
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− ∂

∂ξ

(
q,φ(φin

0 , c
in
0 )φin

1

∂µin
1

∂ξ

)
− ∂

∂ξ

([
q,φ(φin

0 , c
in
0 )φin

2 +
q,φφ(φin

0 , c
in
0 )

2
(φin

1 )2

]
∂µin

0

∂ξ

)
− ∂

∂ξ

(
q,c(φ

in
0 , c

in
0 )cin1

∂µin
1

∂ξ

)
− ∂

∂ξ

([
q,c(φ

in
0 , c

in
0 )cin2 +

q,cc(φ
in
0 , c

in
0 )

2
(cin1 )2

]
∂µin

0

∂ξ

)
+∂ξ

(
q,φc(φ

in
0 , c

in
0 )φin

1 c
in
1

∂µin
0

∂ξ

)
While the last equation looks daunting, it will turn out that most of the terms involving derivatives of
µin

0 will vanish when matching the inner and outer equation.

C.6.3 Inner Chemical potential expansion

To proceed further the different order of the chemical potential must also be expanded in terms of the
inner concentration and phase fields. The chemical potential is given by

µ = −ε2c∇2c+
∂f̄mix

AB (φ, c)

∂c
(C.46)

=⇒ µ

w
= ε

µ

α
= −δ

(
∂2c

∂ξ2
+

εκ̄

(1 + εξκ̄)

∂c

∂ξ
+

ε2

(1 + εξκ̄)2

∂2c

∂σ2

)
+ ε

∂f(φ, c)

∂c
(C.47)

where εc =
√
wWc was used to define δ ≡ (Wc/Wφ)2. The term ∇2c in Eq. (C.46) was expressed in (u, s)

co-ordiates by using Eq. (C.9), then re-scaled in terms of inner co-ordinates (ξ, σ) using Eqs. (C.33). As
with Eq. (C.34), the last term in Eq. (C.9) was dropped as it is of order ε3. Simplifying Eq. (C.47) using
Eq. (C.36) and, once again, retaining only terms up to second order in ε, gives,

µ

α
= δ̄

(
−∂

2c

∂ξ2
− εκ̄ ∂c

∂ξ
+ ε2ξκ̄2 ∂

2c

∂ξ2
+ ε2

∂2c

∂σ2

)
+
∂f(φ, c)

∂c
(C.48)

where δ̄ ≡ δ/ε, which will be assumed, without loss of generality, to be of order unity. Substituting from
Eq. (C.16) the expansion for µin on the left hand side of Eq. (C.47) and cin, φin on the right hand side,
expanding f(φin

0 + δφin, cin0 + δcin), and collecting terms with like powers of ε into separate equations
gives,

O(1) :
µin

0

α
= −δ̄ ∂

2cin0
∂ξ2

+ f,c(φ
in
0 , c

in
0 ) (C.49)

O(ε) :
µin

1

α
= −δ̄ ∂

2cin1
∂ξ2

− δ̄κ̄ ∂c
in
0

∂ξ
+ f,cφ(φin

0 , c
in
0 )φin

1 + f,cc(φ
in
0 , c

in
0 )cin1 (C.50)

The O(ε2) term for µ is not shown as it will not be required.
A few words are in order about the parameter δ ∼W 2

c , which originates from the term |εc∇c|2, in the
free energy. This term can be used to account for compositional gradients across an interface, while the
|εφ∇φ|2 accounts for changes in solid-liquid order [66]. Some phase field theories [16] treat the phase field
interface as an artificial construct and relay entirely on Wc (or equivalently εc) to capture the properties
of solute trapping predicted by experiments and sharp-interface models at rapid solidification rates [18].
The work of Ref. [16] assumes that Wc is larger than Wφ, although the precise values for Wc are not
known. In more recent multi-phase field models [77, 19, 76], multiple phases are modeled using different
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order parameters (or volume fraction fields), {φi}. In this case, only terms comprising gradients of the
phase fields are required to fully capture the sharp interface kinetics of solidification at low solidification
rates. In what follows both compositional and order parameter gradients will be retained, and δ̄ will be
assumed to be of order one, making Wc/Wφ ∼

√
ε.

C.7 Analysis of Inner Equations and Matching to Outer Fields

The next step in the matched asymptotic analysis is to solve the inner equations for φin, cin and µin

(Eqs. (C.40)-(C.42), Eqs. (C.43)-(C.45) and Eqs. (C.49)-(C.50)) at each order and match their solutions,
order by order, to the outer fields φo and co (Eqs. (C.26)-(C.28) and solutions of Eqs. (C.30)) using
the matching conditions in Eqs. (C.17), (C.18) and (C.19). The aim of this exercise is to obtain the
appropriate boundary conditions that the outer phase field model solutions of satisfy when projected into
a hypothetical sharp interface.

C.7.1 O(1) phase field equation (C.40)

Equation (C.40) can be solved analytically by multiplying both sides of the equation by the dφin
0 /dx and

integrating from a position ξ to ∞ gives,

1

2

∫ ∞
ξ

∂

∂ξ′

(
∂φin

0

∂ξ′

)2

dξ′ −
∫ ∞
ξ

∂φin
0

∂ξ′
∂g

∂φin
0

dξ′ = 0

1

2

(
∂φin

0

∂ξ

)2

−
(
g(φin

0 (ξ))− g(φin
0 (∞))

)
= 0 (C.51)

Inverting Eq. (C.51) gives φin
0 through the solution of∫ φin

0

φc

dφin
0√

2
(
g(φin

0 )− g(∞)
) = ξ (C.52)

where φc is an integration constant that defines the position of the interface as in Eq. (C.6). It can be
chosen to shift the origin of co-ordinates in the boundary layer such that φin

0 is an odd function about the
origin. The far field (i.e. bulk phase) values of φin

0 are determined by the properties of g(φ) and satisfy,
according to the boundary conditions in Eq. (C.19), limξ→−∞ φin

0 (ξ) = φs and limξ→∞ φin
0 (ξ) = φL.

As an example, consider the choice of g(φ) = −φ2/2 + φ4/4. Equation (C.52) gives

tanh−1(φin
0 )− tanh−1(φc) = − ξ√

2
(C.53)

or

φin
0 = − tanh

(
ξ − ξo√

2

)
(C.54)

where
ξ0 =

√
2 tanh−1 (φc) (C.55)

For φin
0 to be odd about ξ = 0, ξ0 must be zero, which requires that φc = 0 (picking φc such that φin

0 be
odd about the origin will be required below). In the example considered above, the far field values of the
hyperbolic tangent function are φs = 1 an φL = −1, which define the minima of g(φ).
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C.7.2 O(1) diffusion equation (C.43)

Integrating Eq. (C.43) gives,

∂µin
0

∂ξ
=

B

q(φin
0 , c

in
0 )

(C.56)

where B is an integration constant that may depend of the arclength σ. Integrating Eq. (C.56) once
more gives,

µin
0 = µE(σ) +B

∫ ξ

−∞

dξ

q(φin
0 , c

in
0 )

(C.57)

where µE(σ) is a second integration constant, also dependent on the [scaled] arclength σ since integration
is with respect to ξ. Since q(φin

0 , c
in
0 ) becomes a constant in the liquid, i.e. as ξ → ∞, the limit

limξ→±∞ µin
0 (ξ) = µE+limξ→∞

∫ ξ
−∞ 1/q(φin

0 , c
in
0 )dξ will diverge unless B = 0. Taking these considerations

into account allows the O(1) expression for the the chemical potential expansion from Eq. (C.49) to be
expressed as

−αδ̄ ∂
2cin0
∂ξ2

+
∂f̄mix

AB (φin
0 , c

in
0 )

∂c
= µin

0 (σ) (C.58)

where the notation ∂f̄mix
AB (φin

0 , c
in
0 )/∂c ≡ ∂f̄mix

AB (φ, c)/∂c
∣∣
φin
0 ,c

in
0

will be used hereafter. The lowest order

chemical potential in the interface is thus a constant dependent on curvature. Equation (C.58) can be
solved (or inverted if δ̄ = 0) to give the spatial dependent of cin0 (ξ) through the interface once µin

0 (σ) and
the far field –bulk– values of cin0 (±∞) are determined.

The far-field values of cin0 (ξ) are determined as follows. Consider Eqs. (C.17) and define cL ≡
limη→0+ co0(η), and cs ≡ limη→0− c

o
0(η), where cL(cs) correspond to the lowest order outer concentra-

tion field, co0(η), projected onto the liquid/0+(solid/0−) sides of the interface defined by φ = 0. The first
of Eqs. (C.17) implies that limξ→∞ cin0 (ξ) = cL and limξ→−∞ cin0 (ξ) = cs. Moreover, since cin0 (ξ) asymp-
totes to constant far field values far from the interface, ∂2cin0 /∂ξ

2 → 0 and ∂cin0 /∂ξ → 0 as ξ → ∓∞.
Similarly, the first of Eqs. (C.18) requires that

lim
ξ→±∞

µin
0 ≡ µin

0 (σ) = lim
η→0±

µo0(η) ≡ µo0(0±), (C.59)

where µo0(0±) is the lowest order chemical potential of the outer field projected onto the solid/liquid
sides of the sharp interface; it is a constant that depends on the local curvature. Implementing these
considerations in the ξ → ±∞ limits of Eq. (C.58) gives,

∂f̄mix
AB (φs, cs)

∂c
= µin

0 (σ) = µo0(0±) (C.60)

∂f̄mix
AB (φL, cL)

∂c
= µin

0 (σ) = µo0(0±) (C.61)

Once µo0(0±) is known, cs and cL can be determined. In the case of a flat stationary interface µo(0±)→
µF

eq, which can be determined from equilibrium thermodynamics. For Eqs. (C.60)-(C.61) to be self
consistent for curved and moving interfaces, they must be supplemented by an additional equation, which
relates µo0(0±) to f̄mix

AB (φs, cs), f̄
mix
AB (φL, cL) and curvature [182, 176]. This is given by the lowest order

Gibbs-Thomson condition, derived in the next subsection (see Eq. (C.68) or, equivalently, Eq. (C.72)).
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C.7.3 O(ε) phase field equation (C.41)

The O(ε) equation for φin is simplified by first multiplying it by ∂φin
0 /dξ and integrating it from ξ → −∞

to ∞, giving ∫ ∞
−∞

∂φin
0

∂ξ
L(φin

1 )dξ = −(D̄v̄0 + κ̄)

∫ ∞
−∞

(
∂φin

0

∂ξ

)2

dξ +

∫ ∞
−∞

∂φin
0

∂ξ
f,φ(φin

0 , c
in
0 )dξ (C.62)

where L ≡ ∂ξ ξ − g
′′
(φin

0 ) and the double prime on g(φ) denotes a double derivative with respect to φ.
Integrating the integral on the left hand side of Eq. (C.62) by parts to give∫ ∞

−∞

∂φin
0

∂ξ
L(φin

1 )dξ =

∫ ∞
−∞

∂φin
1

∂ξ

(
∂2φin

0

∂ξ2
− g

′
(φin

0 )

)
dξ = 0 (C.63)

where the last equality comes from Eq. (C.40). The first integral on the right hand side of Eq. (C.62)
will prove to hold a special significance and is denoted as

σφ ≡
∫ ∞
−∞

(
∂φin

0

∂ξ

)2

dξ (C.64)

The second integral on the right hand side of Eq. (C.62) can be simplified by re-writing it as∫ ∞
−∞

∂φin
0

∂ξ
f,φ(φin

0 , c
in
0 )dξ =

∫ ∞
−∞

∂f(φin
0 , c

in
0 )

∂ξ
dξ −

∫ ∞
−∞

∂cin0
∂ξ

f,c(φ
in
0 , c

in
0 )dξ (C.65)

=

{
f̄mix

AB (φL, cL)− f̄mix
AB (φs, cs)

}
α

−
∫ ∞
−∞

∂cin0
∂ξ

{
µin

0

α
+ δ̄

∂2cin0
∂ξ2

}
(C.66)

where Eq. (C.49) was used to substitute f,c(φ
in
0 , c

in
0 ) in the second integral on the right hand side of

Eq. (C.65). The last integral in Eq. (C.66) gives

δ̄

∫ ∞
−∞

∂cin0
∂ξ

∂2cin0
∂ξ2

dξ = 0 (C.67)

as can be seen by integrating once by parts and using far field values of ∂cin0 /∂ξ = 0. The results of
Eqs. (C.64), (C.66) and (C.67) reduce Eq. (C.62) to

µo0(0±)

α
=

{
f̄mix

AB (φL, cL)− f̄mix
AB (φs, cs)

}
α∆c

− (D̄v̄0 + κ̄)
σφ
∆c

(C.68)

where ∆c ≡ (cL − cs) and the first of the matching conditions in Eqs. (C.18) was used to replace
µin

0 = µo0(0±). Equations (C.60), (C.61) and (C.68) comprise a closed system of non-linear equations that
can be solved for {cs, cL, µo0(0±)}.

Equation (C.68) can be simplified into the lowest order form of the Gibb’s Thomson condition, which
relates the deviation of µo0(0±) from its equilibrium value due to curvature and velocity. This is done by
first expanding f̄mix

AB (φL, cL) and f̄mix
AB (φs, cs), respectively, in a Taylor series about cL = cFL and cs = cFs ,

the respective equilibrium liquid and solid concentrations corresponding to a flat stationary interface.
These expansions lead to

f̄mix
AB (φL, cL)−f̄mix

AB (φs, cs)≈
{
f̄mix

AB (φL, c
F
L)+

∂f̄mix
AB (φL, c

F
L)

∂c
(cL − cFL)

}
−
{
f̄mix

AB (φs, c
F
s )+

∂f̄mix
AB (φs, c

F
s )

∂c
(cs − cFs )

}
(C.69)
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Use is then made of equilibrium conditions

µF
eq =

f̄mix
AB (φL, c

F
L)− f̄mix

AB (φs, c
F
s )

cFL − cFs
=
∂f̄mix

AB (φs, c
F
s )

∂c
=
∂f̄mix

AB (φL, c
F
L)

∂c
(C.70)

where µF
eq is the chemical potential of a flat stationary interface. Substituting Eq. (C.69) and Eq. (C.70)

into Eq. (C.68) gives

µo0(0±) = µF
eq −

D̄ασφ
∆c

v̄0 −
σφα

∆c
κ̄ (C.71)

Equation (C.71) is put into dimensional form by utilizing the scalings and definitions found in
Eqs. (C.11), (C.12), (C.13) and (C.33); first write velocity as v̄0 = (do/DL)vdim

0 (where ”dim” im-
plies dimensional) and curvature by κ̄ = (Wφ/ε)κ

dim. Then use the definition of the length scale do from
Eq. (C.11) and note that α/ε = w = 1/λ (deduced form Eq. (C.13)). This finally gives,

µo0(0±) = µF
eq −

( σφ
∆c

)(Wφ

λ

)
κ−

( σφ
∆c

)( τ

λWφ

)
v0 (C.72)

where the superscript ”dim” are implied in Eq. (C.72). It should be noted that the concentration jump
∆c is related to that of a flat stationary interface by ∆c = ∆cF (1 + δc) where δc ≡ ∆c/∆cF − 1 with
∆cF ≡ cFL − cFs . The deviation of ∆c from ∆cF is on the order of Wφκ ∼ ε � 1. As a result, to
O(ε) it is reasonable to approximate ∆c ≈ ∆cF . Equation (C.72) is the first order Gibbs-Thomson
condition satisfied by the outer chemical potential field at the interface. The second order correction to
this expression is derived below.

C.7.4 O(ε) diffusion equation (C.44)

Equation (C.44) is greatly simplified by observing that the µin
0 dependence vanishes as it does not depend

on ξ. The surviving equation is thus

∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

1

∂ξ

)
= −v̄0

∂cin0
∂ξ

(C.73)

Integrating Eq. (C.73) from ξ → −∞ to ξ gives,

q(φin
0 , c

in
0 )
∂µin

1

∂ξ
= −v̄0c

in
0 (ξ) +A (C.74)

The integration constant A is found by considering the ξ → −∞ limit of Eq. (C.74) and by assuming
that Q(φ(ξ → −∞)) = Q(φs) = Ds/DL ≈ 0. With this assumption the boundary condition

lim
ξ→−∞

(
q(φin

0 , c
in
0 )
∂µin

1

∂ξ

)
= 0 = −v̄0c

in
0 (−∞) +A (C.75)

gives A = v̄0cs where limξ→−∞ cin0 (ξ) = cs has been used. Integrating Equation (C.74) once thus gives

µin
1 = −v̄0

∫ ξ

0

[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

dx+ µ̄ (C.76)
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where µ̄ is an integration constant to be determined below. It should be noted that that Ds/DL actually
ranges from 10−4 − 10−2 for most metals during solidification. However, what matters is that diffusion
in the solid over most of the relevant solidification time behaves as if it was zero. This situation can be
practically emulated by setting Ds/DL = 0 throughout. Of course, in this case, the solution of µin

1 may
diverge if the numerator in the integral of Eq. (C.76) vanishes more slowly than q(φin

0 , c
in
0 ) in the overlap

region (i.e. 1� ξ � 1/ε ). It will thus be assumed that q(φin
0 , c

in
0 ) can be chosen such that as ξ → −∞,

the function
[
cin0 (ξ)− cs

]
vanishes more quickly than q(φin

0 , c
in
0 ) → q(φs, cs) ≡ q− ≈ 0. It will also be

shown later that certain classes of phase field models that use a so-called anti-trapping flux in the mass
transport equations can be constructed so as to assure this condition [59].

It is instructive to split Eq. (C.76) into two pieces, one valid for ξ < 0 and the other for ξ > 0,

µin
1 = −v̄0

∫ ξ

0

{[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

− [cL − cs]
q+

}
dx− v̄0(cL − cs)

q+
ξ + µ̄, ξ > 0 (C.77)

µin
1 = v̄0

∫ 0

ξ

[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

dx+ µ̄, ξ < 0 (C.78)

where the notation

q+ ≡ q(φL, cL)

(C.79)

has been defined to simplify the notation. In terms of Eqs. (C.77) and (C.78), the far field (|ξ| � 1)
limits of Eq. (C.76) become,

lim
ξ→∞

µin
1 = v̄0

∫ ∞
0

{
∆c

q+
−
[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

}
dx− v̄0∆c

q+
ξ + µ̄ (C.80)

lim
ξ→−∞

µin
1 = v̄0

∫ 0

−∞

[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

dx+ µ̄ (C.81)

Using Eqs. (C.80) and (C.81) in the second matching condition of Eqs. (C.18) gives

µo1(0+) +
∂µo0(0+)

∂η
ξ = µ̄+ v̄0F

+ − v̄0∆c

q+
ξ (C.82)

µo1(0−) +
∂µo0(0−)

∂η
ξ = µ̄+ v̄0F

− (C.83)

where the definitions

F+ =

∫ ∞
0

{
∆c

q+
−
[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

}
dx

F− =

∫ 0

−∞

[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

dx (C.84)

have been made to further simplify notation.
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Subtracting Equation (C.83) from Eq. (C.82) and comparing powers of ξ0 of the result gives,

µo1(0+)− µo1(0−) = (F+ − F−)v̄0 (C.85)

Equation (C.85) can be made more illuminating by expressing µo ≈ µo0 + εµo1 + · · · with µo0(0−) = µo0(0−)
and replacing ε = Wφvs/DL and v̄0 = v0/vs. This gives,

εµo1(0+)− εµo1(0−) =
Wφ

DL
(F+ − F−)v0 (C.86)

Equation (C.85) predicts that to an error of O(ε2), a finite size of interface thickness (Wφ) gives rise to a
jump discontinuity in the chemical potential for moving interfaces. This effect lies at the heart of solute
trapping.

Comparing powers of ξ in Eq. (C.83) and Eq. (C.82) gives,

q+ ∂µ
o
0(0+)

∂η
= −v̄0∆c (C.87)

and ∂ηµ
o
0(0−) = 0. Equation (C.87) is cast into dimensional units by substituting v̄0 = v0/vs and

η = vsu/DL, which leads to

DLq
+ ∂µ

o
0(0+)

∂u
= −∆cv0 (C.88)

Equation (C.88) is the usual condition of mass flux conservation across the solid-liquid interface, to first
order in ε. This equation will be augmented with additionsl terms that appear at order ε2 below.

It is instructive to conclude this section with a few words about the case of a finite q−. It is straightfor-
ward to re-work the steps in this subsection to show that in this situation the flux conservation condition
becomes,

q−
∂µo0(0−)

∂η
− q+ ∂µ

o
0(0+)

∂η
= v̄0∆c (C.89)

In the limit q− � 1, Eq. (C.87) is again recovered. The q− 6= 0 case now introduces an additional
correction term in chemical potential jump in Eq. (C.85), which depends on the gradient of the chemical
potential arising from the boundary condition in Eq. (C.75). Namely,

µo1(0+)− µo1(0−) =
(
F+ − F−

)
v̄0 − q−

∂µo0(0−)

∂η

(
G+ −G−

)
(C.90)

where G+ and G− are defined by

G+ =

∫ 0

−∞

(
1

q(φin
0 , c

in
0 )
− 1

q+

)
dx

G− =

∫ 0

−∞

(
1

q−
− 1

q(φin
0 , c

in
0 )

)
dx (C.91)

As in Eq. (C.86), both corrections terms vanish as Wφ → 0. To eliminate the chemical potential mismatch
for for a diffuse Wφ, it is necessary to simultaneously make ∆F ≡ F+−F− and ∆G ≡ G+−G− vanish, in
general a very difficult task 4. For simpler to consider the limit of the one-sided model q−∂ηµ

o
0(0−)→ 0,

making the second term on the right hand side of Eq. (C.90) vanish.

4These ”corrections” actually represent physical deviations from the usual interface equilibrium that become manifest
at high solidification rates, since Wφ is small in reality. At low solidification rates, however, where an artificially enlarged
Wφ is used for numerical expediency, these terms can causes spurious effects and, hence, need to eliminated.
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C.7.5 O(ε2) phase field equation (C.42)

Equation (C.42) is simplified, analogously with Eq. (C.41), by multiplying by ∂φin
0 /∂ξ and integrating

from ξ = −∞ to ξ =∞. Dropping the φin
0 terms dependent on t̄ and σ gives,∫ ∞

−∞

∂φin
0

∂ξ
L(φin

2 )dξ =−D̄v̄1

∫ ∞
−∞

(
∂φin

0

∂ξ

)2

dξ +

∫ ∞
−∞

∂φin
0

∂ξ

{
f,φφ(φin

0 , c
in
0 )φin

1 +f,φc(φ
in
0 , c

in
0 )cin1

}
dξ (C.92)

− (D̄v̄0 + κ̄)

∫ ∞
−∞

∂φin
0

∂ξ

∂φin
1

∂ξ
dξ + κ̄2

∫ ∞
−∞

ξ

(
∂φin

0

∂ξ

)2

dξ +
1

2

∫ ∞
−∞

∂φin
0

∂ξ
g
′′′

(φin
0 )(φin

1 )2dξ

As in Section (C.41), the left hand side of Eq. (C.92) vanishes as the integral can be converted through
integration by parts to Eq. (C.63) with φin

1 replaced by φin
2 . The fourth term on the right hand side of

Eq. (C.92) vanishes since the derivative of φin
0 is symmetric or even in ξ about the origin (which can be

done through the choice of φc), while ξ is odd. For the third and fifth terms on the right hand side of
Eq. (C.92), it is instructive to investigate the properties of φin

1 from the O(ε) phase field equation

L(φin
1 ) = −(D̄v̄0 + κ̄)

∂φin
0

∂ξ
+ f,φ(φin

0 , c
in
0 ) (C.93)

Following the approaches used in quantitative phase field modeling [121, 113, 59, 221, 119], the bulk free
energies considered here will be assumed to be reducible to the form f,φ(φin

0 , c
in
0 ) = GP,φ(φin

0 ), where G
is independent of ξ and P,φ(φ) is chosen to be an even function of φ about the interface 5. Moreover,

choosing g(φ) to be an even function of φ, makes the operator L even in ξ since g
′′
(φin

0 (ξ)) is even
in ξ. Since both sides of Eq (C.93) are even in ξ, φin

1 (ξ) must thus be an even function of ξ. These
considerations imply that the third integral on the right hand side of Eq. (C.92) is zero as it is an integral
of an even function multiplied by an odd function. Similarly the last integral on on the right hand side
of Eq (C.92) vanishes, as its integrand is odd in ξ (i.e., even function × odd function × even function).
With these simplifications, Eq. (C.92) thus reduces to

−D̄σφv̄1 +

∫ ∞
−∞

∂φin
0

∂ξ

{
f,φφ(φin

0 , c
in
0 )φin

1 + f,φc(φ
in
0 , c

in
0 )cin1

}
dξ = 0 (C.94)

The integral term in Eq. (C.94) can be further simplified. Consider, first, the expression

T1 ≡
∫ ∞
−∞

(
∂φin

0

∂ξ
f,φc(φ

in
0 , c

in
0 )cin1 −

∂cin0
∂ξ

f,φc(φ
in
0 , c

in
0 )φin

1

)
dξ (C.95)

Equation (C.50) can be used to eliminate the f,cφ(φin
0 , c

in
0 )φin

1 term from the second term on the right
hand side of Eq. (C.95). This gives,

T1 =

∫ ∞
−∞

∂φin
0

∂ξ
f,φc(φ

in
0 , c

in
0 )cin1 dξ −

∫ ∞
−∞

∂cin0
∂ξ

µin
1

α
dξ − δ̄κ̄σc

− δ̄

∫ ∞
−∞

∂cin0
∂ξ

∂2cin1
∂ξ2

dξ +

∫ ∞
−∞

∂cin0
∂ξ

f,cc(φ
in
0 , c

in
0 )cin1 dξ (C.96)

5This restriction can still accommodate a large class of models. It also is quite convenient feature for quantitative phase
field modeling since for flat stationary interfaces, where cin0 becomes independent of curvature and interface velocity, it

makes the function fφ(φin0 , c
in
0 ) vanish. Thus, for this class of free energies, the concentration and phase field completely

decouple at steady state.
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were

σc ≡
∫ ∞
−∞

(
∂cin0
∂ξ

)2

dξ (C.97)

Integrating the last two terms in Eq. (C.96) by parts once yields, for the first,

−δ̄
∫ ∞
−∞

∂cin0
∂ξ

∂2cin1
∂ξ2

dξ = δ̄

∫ ∞
−∞

∂cin1
∂ξ

∂2cin0
∂ξ2

dξ (C.98)

while the second term becomes,∫ ∞
−∞

∂cin0
∂ξ

f,cc(φ
in
0 , c

in
0 )cin1 dξ =

∫ ∞
−∞

cin1
∂f,c(φ

in
0 , c

in
0 )

∂ξ
dξ −

∫ ∞
−∞

∂φin
0

∂ξ
f,φc(φ

in
0 , c

in
0 )cin1 dξ

=
[
cin1 (∞)f,c(φL, cL)− cin1 (−∞)f,c(φs, cs)

]
−
∫ ∞
−∞

∂cin1
∂ξ

f,c(φ
in
0 , c

in
0 )dξ

−
∫ ∞
−∞

∂φin
0

∂ξ
f,φc(φ

in
0 , c

in
0 )cin1 dξ (C.99)

Substituting Eqs. (C.98) and (C.99) back into Eq. (C.96) and making the replacement f,c(φL, cL) =
f,c(φs, cs) = µo0(0±)/α =

(
−δ̄∂2cin0 /∂ξ

2 + f,c(φ
in
0 , c

in
0 )
)

gives

T1 = −
∫ ∞
−∞

∂cin0
∂ξ

µin
1

α
dξ − δ̄σcκ̄ (C.100)

Comparing T1 in Eq. (C.100) with that in Eq. (C.95) gives,∫ ∞
−∞

∂φin
0

∂ξ
f,φc(φ

in
0 , c

in
0 )cin1 = −

∫ ∞
−∞

∂cin0
∂ξ

µin
1

α
dξ − δ̄σcκ̄+

∫ ∞
−∞

∂cin0
∂ξ

f,φc(φ
in
0 , c

in
0 )φin

1 dξ (C.101)

Substituting the left hand side of Eq. (C.101) into Eq. (C.94) gives,

−D̄σφv̄1 −
∫ ∞
−∞

∂cin0
∂ξ

µin
1

α
dξ − δ̄σcκ̄+

∫ ∞
−∞

∂f,φ(φin
0 , c

in
0 )

∂ξ
φin

1 dξ = 0 (C.102)

where the decomposition ∂f,φ(φin
0 , c

in
0 )/∂ξ = (∂φin

0 /∂ξ)f,φφ(φin
0 , c

in
0 ) + (∂cin0 /∂ξ)f,φc(φ

in
0 , c

in
0 ) was used in

arriving at Eq. (C.102).
Proceeding further, Eq. (C.76) is used to eliminate µin

1 in Eq. (C.102). Moreover, from the discussion
of the symmetry properties of φin

0 and φin
1 , the last term in Eq. (C.102) vanishes. With these simplification,

Eq. (C.102) reduces to

D̄σφv̄1 + δ̄σcκ̄−
v̄0

α
K +

µ̄

α
∆c = 0 (C.103)

where

K =

∫ ∞
−∞

∂cin0
∂ξ

{∫ ξ

0

cin0 (x)− cs
q(φin

0 , c
in
0 )

dx

}
dξ (C.104)

Using Eq. (C.82) and Eq. (C.83) to eliminate µ̄ finally leads to

µo1(0±) = −αδ̄σc
∆c

κ̄− αD̄σφ
∆c

v̄1 +
K + F±∆c

∆c
v̄0 (C.105)
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It is noteworthy that µo1(0), unlike µo0(0), is not the same on either side of the interface, i.e. there is a
chemical potential jump proportional to ∆F ≡ F+ − F− at the interface. This is a direct consequence
of the finite size of the interface (Wφ) and leads to the physical phenomenon of solute trapping 6.

It is instructive to re-cast εµo1 into dimensional form by utilizing the scalings and definitions found in
Eqs. (C.11), (C.12), (C.13) and (C.33), giving

εµo1(0±) = −δσcWφ

∆c
κ+

K + F±∆c

∆c

Wφ

DL
v0 −

τσφ
Wφλ∆c

εv1 (C.106)

Since µo ≈ µo0 + εµo1 +O(ε2), Eq. (C.106) and Eq. (C.72) can be combined to obtain the O(ε2) correction
to the Gibbs-Thomson condition,

δµo(0±) ≡ µo(0±)−µFeq = − (σφ + δσc)

∆c

Wφ

λ
κ− τσφ

Wφλ∆c

{
1− (K + F±∆c)λ

σφD̄

}
v0−

τσφ
Wφλ∆c

εv1 (C.107)

Note that the last O(ε) term should receive a second contribution such as the (K+F±∆c) term appearing
in the v0 term if the asymptotic expnasion is carried out to O(ε3). It appeared because the interface
velocity vn(s, t) was expanded as in Ref. ([10]).

For the case e q− 6= 0 the Gibbs-Thomson Eq. (C.107) will contain an additional correction brought
about by the additional G+ and G− corrections to µin

1 , discussed in section (C.7.4). Working out and
substituting the revised form of µin

1 into Eq. (C.102), it is straightforward to show that Eq. (C.107) will
contain the extra term

µoextra =

{
∆F

∆c
+
[
G+ −G±

]}
q−
∂µo0(0−)

∂η
(C.108)

on the right hand side. As discussed above, things become simpler, without loosing generality, if the
one-sided diffusion is considered, where q−∂,ηµ

o
0 → 0 is considered, making this extra correction term

negligible.

C.7.6 O(ε2) diffusion equation (C.45)

The final phase in the asymptotic expansion is to extend the flux conservation condition, Eq. (C.88) to
include second order ε corrections, as was done for the Gibbs-Thomson condition in the last subsection.
Using what has been determined about µin

0 , φin
0 and cin0 , the O(ε2) concentration equation (C.45) reads

∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

2

∂ξ

)
= −v̄1

∂cin0
∂ξ
− v̄0

∂cin1
∂ξ
− κ̄q(φin

0 , c
in
0 )
∂µin

1

∂ξ
− ∂

∂σ

(
q(φin

0 , c
in
0 )
∂µin

0

∂σ

)
− ∂

∂ξ

(
q,φ(φin

0 , c
in
0 )φin

1

∂µin
1

∂ξ

)
− ∂

∂ξ

(
q,c(φ

in
0 , c

in
0 )cin1

∂µin
1

∂ξ

)
(C.109)

Substituting q(φin
0 , c

in
0 )∂µin

1 /∂ξ = −v̄0

(
cin0 (ξ)− cs

)
from Eq. (C.76) (for the q− = 0 case below) and

integrating once with respect to ξ gives,

q(φin
0 , c

in
0 )
∂µin

2

∂ξ
= −v̄1c

in
0 (ξ)− v̄0c

in
1 (ξ) + κ̄v̄0

∫ ξ

0

[
cin0 (ξ)− cs

]
dx− ∂2µin

0

∂σ2

∫ ξ

0

q(φin
0 , c

in
0 )dx

−
{
q,φ(φin

0 , c
in
0 )φin

1 + q,c(φ
in
0 , c

in
0 )cin1

} ∂µin
1

∂ξ
+B(σ) (C.110)

6Of coarse, at small velocities, where this effect becomes negligible in experiments, a phase field model operated at an
exaggeratedly large Wφ for numerical efficiency will accentuate this term’s significance, leading to errors.
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Where B(σ) is an integration constant that depends on the [scaled] arc-length variable σ.
It is not necessary to explicitly determine µin

2 . Instead the ξ → ±∞ limits (i.e. solid/liquid) limits
of Eq. (C.110) only need be considered. Several terms in Eq. (C.110) can be greatly simplified in this
limit. From the definition of q(φ, c) (Eq. (C.4)), the expression q,c(φ

in
0 , c

in
0 ) = −Z(cin0 )q(φin

0 , c
in
0 ), where

Z(c) ≡ ∂,ccµ/∂,cµ where µ ≡ ∂f̄mix
AB /∂c 7. This implies, using Eq. (C.75), that q,c∂µ

in
1 /∂ξ → 0 as ξ → −∞

since limξ→−∞ q(φin
0 , c

in
0 )→ q− → 0. Also, from the matching conditions between the inner and out phase

field solutions, limξ→±∞ φin
1 (ξ) = 0. With these simplifications the ξ → −∞ limit of Eq. (C.110) becomes

lim
ξ→−∞

(
q(φin

0 , c
in
0 )
∂µin

2

∂ξ

)
= 0 = −v̄1cs − v̄0

{
lim

ξ→−∞
cin1 (ξ)

}
− κ̄v̄0

∫ 0

−∞

(
cin0 (x)− cs

)
dx

+
∂2µin

0

∂σ2

∫ 0

−∞
dx q(φin

0 , c
in
0 ) +B(σ) (C.111)

Analogously, the ξ →∞ limit is

lim
ξ→∞

(
q(φin

0 , c
in
0 )
∂µin

2

∂ξ

)
= q+ ∂µ

o
1(0+)

∂η
+ q+ ∂

2µo0(0+)

∂η2
ξ

= −v̄1cL − lim
ξ→∞

[{
v̄0 − Z(cL)q+∂,ηµ

o
0(0+)

}
cin1 (ξ)

]
+ κ̄v̄0

∫ ∞
0

dx
(
cin0 (x)− cL

)
+κ̄v̄0∆c ξ − ∂2µin

0

∂σ2

{∫ ∞
0

dx
(
q(φin

0 , c
in
0 )− q+

)
+ q+ξ

}
+B(σ) (C.112)

where the last of Eqs. (C.18) was used on the first line of Eq. (C.112) and the second of Eqs. (C.18) was
used to express limξ→∞ ∂,ξµ

in
1 in terms of outer solutions.

Subtracting Eq. (C.112) from Eq. (C.111), using the second of Eqs. (C.17) to express the limits of
cin1 (ξ) at ±∞ and noting from Eq. (C.87) that q+∂,ηµ

o
0(0+) = −v̄0∆c (for q− = 0), gives

−q+ ∂µ
o
1(0+)

∂η
− q+ ∂

2µo0(0+)

∂η2
ξ = v̄1∆c+ v̄0∆c1 + κ̄v̄0∆H +

∂2µin
0

∂σ2
∆J + ∆cv̄0Z(cL)co1(0+) (C.113)

+

{
∆cv̄0Z(cL)

∂co0(0+)

∂η
−v̄0

(
∂co0(0−)

∂η
− ∂c

o
0(0+)

∂η

)
+q+ ∂

2µin
0

∂σ2
−κ̄v̄0∆c

}
ξ

where ∆c1 ≡ co1(0+)− co1(0−) has been defined for simplicity, while ∆H ≡ H+−H− and ∆J ≡ J+−J−,
where

H+ =

∫ ∞
0

dx
(
cL − cin0 (x)

)
, H− =

∫ 0

−∞
dx
(
cin0 (x)− cs

)
, (C.114)

J+ =

∫ ∞
0

dx
(
q(φin

0 , c
in
0 )− q+

)
, J− =

∫ 0

−∞
dx
(
q− − q(φin

0 , c
in
0 )
)

(C.115)

(note that for one-sided diffusion considered here q− vanishes identically and is merely put in the J−

integral for symmetry). Collecting the terms Eq. (C.113) corresponding to ξ0 into one equation gives

7Z is strictly also a function of φ. However in the limits studied below, it will only be evaluated in the far field where
φin0 becomes constant, and thus it is written as a function of cin0 to simplify the notation.
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the remaining, O(ε2), contribution to the flux conservation condition for the case of one-sided diffusion.
Namely,

q+ ∂µ
in
1 (0+)

∂η
= −v̄1∆c− κ̄v̄0∆H − ∂2µin

0

∂σ2
∆J − v̄0∆c1 −∆cv̄0Z(cL)co1(0+) (C.116)

Equation (C.116) is reverted to dimensional units by multiplying both sides by ε and using η =
vsu/DL, κ̄ = (Wφ/ε)κ, v̄j = vj/vs, (j = 1, 2) and σ = (ε/Wφ)s. This gives

DLq
+ ∂ (εµo1(0+))

∂u
= − (εv1) ∆c−

[
∆Hv0 +DL∆J∂θ

(
κ∂θµ

o
0(0±)

)]
Wφκ−v0 (ε∆c1)−∆cv0Z(cL)

(
εco1(0+)

)
(C.117)

where the chain rule has been used to write ∂ssµ
in
0 ≡ ∂ssµ

o
0(0±) in terms of the angle θ of the local

interface normal by using the relation κ = ∂θ/∂s. Adding the first order flux conservation condition from
Eq. (C.88) to Eq. (C.117) gives

DLq
+ ∂ (µo0(0+) + εµo1(0+))

∂u
= −∆c (v0 + εv1)−

[
∆Hv0 +DL∆J∂θ

(
κ∂θµ

o
0(0±)

)]
Wφκ

− (ε∆c1) v0 −∆cv0Z(cL)
(
εco1(0+)

)
(C.118)

The final stage of this subsection is to show that the last two terms on the right hand side of Eq. (C.118)
are related to the chemical potential jump, proportional to ∆F . To see this, note that since µout =
µo0 + εµo1, then µout(0+)− µout(0−) = εµo1(0+)− εµo1(0−), which, from Eq. (C.86), gives

εµo1(0+)− εµo1(0−) ≡ δµo1(0+)− δµo1(0−) =
∆FWφ

DL
v0 (C.119)

The assumption of an asymptotic series expansion implies that the chemical potential jumps, δµo1(0±) ≡
εµo1(0±), can be related to the corresponding concentration changes, δco1(0±) ≡ εco1(0±). Thus, the
δµo1(0±) can be Taylor expanded to lowest order in terms of δco1(0±), making Eq. (C.119)

∂µo0(cL)

∂c
δco1(0+)− ∂µo0(cs)

∂c
δco1(0−) = ΛLεc

o
1(0+)− Λsεc

o
1(0−) =

∆FWφ

DL
v0 (C.120)

where the definitions ΛL ≡ ∂cµ
o
0(cL) = ∂ccf̄

mix
AB (cL) and Λs ≡ ∂cµ

o
0(cs) = ∂ccf̄

mix
AB (cs) have been made.

Recalling the definition of Z(cL), the last two terms of Eq. (C.118) can be written as

− (ε∆c1) v0− ∆cv0Z(cL)
(
εco1(0+)

)
=−

{
1+

∂,ccµ(cL)

(∂,cµ(cL))
2 ∂,cµ(cL)∆c

}
voεc

o
1(0+)+voεc

o
1(0−) (C.121)

For a bulk free energy f̄mix
AB corresponding to an ideal, dilute alloy, it is straightforward to show that

∂,ccµ(cL)/ (∂,cµ(cL))
2

= −1, exactly, for all cL. This will also be assumed to be the leading order
behaviour for a wide class of alloys described by regular or sub-regular solution type models, particularly
at low concentrations. Moreover, ideal, dilute alloys satisfy ∂,ccf̄

mix
AB (cL)cL ≈ ∂,ccf̄

mix
AB (cs)cs ≈ 1, which

will also be assumed to generally valid here for more general, albeit dilute, alloys. We define the solute
partition or segregation coefficient between solid and liquid phases by 8

k ≡ cs
cL
≈ ΛL

Λs
=
∂,ccf̄

mix
AB (cL)

∂,ccf̄mix
AB (cs)

(C.122)

8This is the same as the equilibrium partition coefficient, ke, only for a flat stationary interface. Recall from sec-
tions (C.7.2) and (C.7.3) that cs and cL involve curvature
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Using the above considerations and Eqs. (C.122) in Eq. (C.121), then comparing with Eq. (C.120) and
noting that ∆c = (1− k)cL, simplifies Eq. (C.121) to

− (ε∆c1) v0 −∆cv0Z(cL)
(
εco1(0+)

)
≈ −v0

[
kεco1(0+)− εco1(0−)

]
= −k∆FWφ

ΛLDL
v2

0 (C.123)

The final form of the mass flux conservation condition at the interface is given by substituting
Eq. (C.123) into Eq. (C.118), gives, to order O(ε2),

DLq
+ ∂ (µo0(0+) + εµo1(0+))

∂u
= −∆c vn −

[
∆Hv0 +DL∆J∂θ

(
κ∂θµ

o
0(0±)

)]
Wφκ−

k∆F

ΛLDL
Wφv

2
0 (C.124)

where vn = v0 + εv1 + · · · is the second order expansion of velocity. Note that the other terms that scale
with v0 at this order of expansion would acquire v1 contributions if a higher order velocity expansion is
used [10].

As in previous sections, it is instructive to discuss the case of q− 6= 0 on the flux conservation equation
at order ε2. In this situation, the left hand side of Eq. (C.124) is altered to

DLq
+ ∂ (µo0(0+) + εµo1(0+))

∂u
−DLq

− ∂ (µo0(0−) + εµo1(0−))

∂u
(C.125)

and the additional term (
q−
∂µo0(0−)

∂u

)
Wφ∆Fv0 (C.126)

appears at the end of Eq. (C.124). This correction also vanishes for specific classes of phase field models
constructed such that ∆F = 0, a condition required to make contact with traditional sharp interface
kinetics at low undercooling. As has been done throughout, it is most convenient to consider one-sided
diffusion, where q− = 0 identically, where Eq. (C.124) is recovered.

C.8 Summary of Results of Appendix Sections (C.2)-(C.7)

It is useful at this point to summarize the relevant results of the asymptotic analysis performed up to this
point in this Appendix, and to interpret the physical significance of the results obtained in the context
of traditional sharp interface models for alloy solidification.

C.8.1 Effective sharp Interface limit of Eqs. (C.2)

The asmptotic analysis derived in Appendix (C) derives the effective sharp interface model corresponding
to the phase field model described by equations (C.2)-(C.5). The main results that were explicitly derived
covered the case of zero or very small diffusion in the solid –a metallurgical situation closely obeyed by
substitutional diffusion. Specifically, on length scales larger than the interface width Wφ, the diffusion of
solute impurities is governed by the standard diffusion equation and phases are described by a uniform
(i,e, mean field) order parameter. Moreover, the outer concentration (c), chemical potential (µ) and phase
(φ) fields evolve such that their asymptotic behaviour (i.e. their projection onto an interface defined by
the surface φ(~x) = φc, where φc is chosen to make φo(x) an odd function) is consistent with the following
sharp interface boundary conditions:
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• The lowest order (in ε) of the phase field profile, φin
0 , is given by Eq. (C.52). Its values far from the

interface are denoted φs/φL in the solid/liquid phases. The lowest order concentration field, cin0 , is
given by Eq (C.58)

• Equations (C.60), (C.61) and (C.72) collectively determine lowest order concentrations on the liquid
(cL) and solid (cs) side of the interface, corrected for curvature and interface velocity:

∂f̄mix
AB (φs, cs)

∂c
= µo0(0±) (C.127)

∂f̄mix
AB (φL, cL)

∂c
= µo0(0±) (C.128)

where the lowest order chemical potential through the interface is given by

µo0(0±) = µF
eq −

( σφ
∆c

)(Wφ

λ

)
κ−

( σφ
∆c

)( τ

λWφ

)
v0 (C.129)

with µF
eq being the equilibrium chemical potential between bulk solid and liquid, ∆c ≡ cL − cs and

σφ is defined in Eq. (C.64). It is recalled that v0 is the lowest order normal interface velocity 9

and κ is curvature. Other constants are phase field model parameters defined at the beginning of
Appendix (C).

• Equation (C.107) describes the second order Gibbs-Thomson correction to the equilibrium chemical
potential on either side of the effective sharp interface:

δµo(0±) ≡ µo(0±)− µFeq = − (σφ + δσc)

∆c

Wφ

λ︸ ︷︷ ︸
∝ do

κ− τσφ
Wφλ∆c

{
1− (K + F±∆c)λ

σφD̄

}
︸ ︷︷ ︸

∝ β±

v0 (C.130)

where σc is given by Eq. (C.64), F+, F− are given by Eqs. (C.84), K by Eq. (C.104) and D̄ =
DLτ/W

2
φ . The underlined terms are the effective capillary length and kinetic coefficient of the

corresponding sharp interface model. Note that β+ 6= β− since F+ 6= F− in general.

• Equation (C.124) describes the conservation of mass flux conservation across the effective sharp
interface:

DLq
+ ∂ (µo0(0+) + εµo1(0+))

∂u
= −∆c v0 −

[
∆Hv0 +DL∆J∂θ

(
κ∂θµ

o
0(0±)

)]
Wφκ−

k∆F

ΛLDL
Wφv

2
0

(C.131)
where ∆H and ∆J are given by Eqs. (C.114), (C.115), respectively, while ∆F = F+−F− and the
variables k and ΛL are defined in Eq. (C.122).

C.8.2 Interpretation of thin interface limit correction terms

It is clear that the effective sharp interface limit of the phase field model is not the same as the traditional
sharp interface model, in the limit of a diffuse Wφ. There are two main differences: The chemical

9A higher order correction v1 to the velocity is not written here, which is equivalent to assuming that vn = v0. Also, ∆c
can be substituted for ∆cF throughout, as this will only lead to negligible, higher order curvature and velocity corrections.
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potential experiences a jump at the interface proportional to ∆F as shown by Eq. (C.107). Moreover the
flux conservation condition, Eq. (C.124), has three ”extra” terms not traditionally seen when describing
sharp interface kinetics of solidification and analogous free boundary problems. It is instructive to consider
their physical origin. The chemical potential jump (∆F ) arises when solute diffuses through a finite sized
interface with a finite mobility. If the solidification rate is too fast or, alternatively, if the physical
interface of the phase boundary is too large, it is not possible for atoms to remain in local equilibrium
at the interface –one of the quintessential assumptions of traditional sharp interface models. As a result,
the interface maintains a two-sided chemical potential. The ∆H term arises because of the arclength of
the interface being slightly longer one side than the other. That effectively serves to create a source of
solute at locations of high curvature. The ∆J term arises because solute diffusion at the interface can
occur across (i.e. normal to) the interface as well as laterally, along the interface. Again, this is a feature
that, by construction, traditional sharp interface models do not incorporate.

How can the differences between the traditional sharp interface model of alloy solidification and
that predicted by the above phase field analysis reconciled? This is done by noting that all so-called
“correction terms” (first coined as such in [113]) descried above scale with the interface width Wφ and
the interface speed v0. That implies that if a material has a perfectly sharp phase boundary (Wφ → 0)
during solidification, all three ”corrections” vanish. In reality Wφ ∼ 10−9m, not zero. It will also be
noted that the the ∆F and ∆H corrections also scale with the interface speed v0. For most solidification
problems associated with thin slab or continuous casting the rates of solidification are sufficiently low
that the correction terms associated with ∆F and ∆H are so small that they can be neglected. It should
be remarked that the while the ∆J term does not couple to v0 its magnitude, Wφκ � 1 for nearly all
microstructures of interest and can thus be neglected, even for modest values of Wφ.

Of course, conducting simulations of Eqs. (C.2) with Wφ on the order of nanometers and at an
undercooling that emulates realistic (i.e., slow) solidification rates would lead to impractically long CPU
times (see section (A.3) below). One way to avoid this dilemma is to simulate with an artificially diffuse
interface widthWφ, which reduces simulation times. This, however, leads to results that are quantitatively
different from the standard sharp interface kinetics expected for alloy solidification. This is due to the
amplification of the corrections terms proportional to ∆F , ∆H and ∆J discussed above. Until recently
this was a problem for most single order parameter phase field models, multiple order parameters models
and models incorporating an orientation field. The work of Karma and co-workers [114, 113, 59] recently
changed this –at least for ideal, dilute alloys– by using a so-called anto-trapping flux source in the solute
diffusion equation. This was then extended by other researchers to multi-phase solidification [76], non-
ideal alloys [195] and multi-component alloys [119]. The anti-trapping formalism is discussed in detail in
the section (C.9).

C.9 Elimination of Thin Interface Correction Terms

This, the last, section of the Appendix (C) modifies the phase field model of Eqs. (C.2) so as to make it
possible to eliminate the so-called correction terms ∆F , ∆H and ∆J discussed in the previous sections.
These modification will involve two changes. The first is to introduce a co-called anti-trapping flux term
in the concentration equation. The second is to make the φ-dependent interpolation functions in the
phase field and concentration equations independent. In so doing the ”fundamental” origin of the phase
field model will be abandoned in favour for a mathematical ”trick” that serves to endow the [modified]
phase field equations with extra degrees of freedom that make it possible to match the sharp interface
model. The idea of adding an anti-trappig flux was first developed for an ideal, dilute binary alloy model
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by Karma and co-workers [113, 59]. It has since been extended to non-ideal binary alloys for single phase
[195] and three-phase solidificaiton [76] and to multi-component solidification [119].

C.9.1 Modifying the phase field equations

Consider the following two modifications to the phase field equations (C.2):

• Let the g̃(φ) denote the function that interpolates µ ≡ ∂,cf̄
mix
AB (φ, c) between bulk solid and bulk

liquid. Define a new function h(φ), where h(φ) and ∂φh(φ) have the same limits as g̃(φ) and ∂φg̃(φ),
respectively, at φ = φs and φ = φL. Redefine the chemical potential appearing in both phase field
equations by

µ(φ, c)→ ∂cf̄
mix
AB (h(φ), c) (C.132)

• Add a new source of flux is subtracted from the traditional gradient flux in the solute diffusion
equation. This flux is given by

~Ja = −Wφa(φ)U(φ, c)∂tφ
∇φ
|∇φ|

(C.133)

and is referred to as an anti-trapping current, after Karma [113]. The functions a(φ) and U(φ, c)
are as yet unspecified functions of φ and c.

It is further assumed that the bulk free energy f̄mix
AB (φ, c) (or equivalently f(φ, c) ≡ f̄mix

AB (φ, c)/α) can be
cast into the general form

∂φf̄
mix
AB (φ, c) = ∆cG(µ− µo0(0±), µo0(0±)− µF

Eq)P ′(φ) (C.134)

where µ(φ, c) ≡ ∂cf̄
mix
AB (φ, c), while µo0(0±) is the lowest order outer solution of the chemical potential

through the interface, µF
Eq is the chemical potential of a flat stationary interface, ∆c = (cL − cs) and

P ′(φ) ≡ dP (φ)/dφ. The function G(x, y) satisfies: G(0, 0) = 0, G(0, y) = y, ∂xG(x = 0, y) = 1. Also,
the function P (φ) is odd in φ and interpolates between two constants in the buk solid and liquid. Here,
P (φL)− P (φs) = −1.

The addition of h(φ) and ~Ja provide additional degrees of freedom to the original phase field equations
so as to be able to eliminate the corrections terms ∆F , ∆H and ∆J from the effective sharp interface
limit of the phase field equations derived above. The consequences of these modification to the asymptotic
analysis are considered next. For simplicity only the case δ = 0 is considered.

C.9.2 Changes due to the altered form of bulk chemical potential

The section re-traces the relevant algebra of the previous asymptotic analysis to demonstrate how the
first two modifications of section (C.9.1) alter the effective equilibrium and sharp interface properties of
the phase field equations from those summarized in section (C.8). The effect of the anti-trapping will be
considered in the next subsection.

• O(1) phase field equation: This clearly stays unaltered. Moreover, Eq. (C.134) implies that the
lowest order φin

0 equation will also solve for the steady state φ field.
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• O(1) concentration equation: Equation (C.58) follows exactly as before except that h(φ) is used,

∂cf̄
mix
AB (φin

0 , c
in
0 ) = µo0(0±)→ ∂cf̄

mix
AB (h(φin

0 ), cin0 ) = µo0(0±) (C.135)

Since h(φ) and g(φ) have the same limits, the modified conditions in Eqs. (C.60) and (C.61) will
remain unchanged. The lowest order concentration profile through the interface will now be inter-
polated by h(φ).

• O(ε) phase field equation: Using Eqs. (C.134), the last term in Eq. (C.62) can be written as∫ ∞
−∞

∂φin
0

dξ
f,φ(φin

0 , c
in
0 )dx→ ∆c

α

∫ ∞
−∞

∂φin
0

dξ
G(µ(φin

0 , c
in
0 )− µo0(0±) , µo0(0±)− µF

Eq )P ′(φ)dx (C.136)

However, from Eqs. (C.58) and (C.59) , µ(φin
0 , c

in
0 ) = f̄mix

AB (h(φin
0 ), cin0 ) = µo0(0±) giving

G(µ(φin
0 , c

in
0 )− µo0(0±) , µo0(0±)− µF

Eq ) = G( 0 , µo0(0±)− µF
E ) = µo0(0±)− µF

E (C.137)

Using Eq. (C.137) in Eq. (C.136) leads to Eq. (C.72).

• O(ε) concentration equation: This is unaffected as the differential equation solves directly for the
chemical potential and does not make explicit reference to the constitutive relation between µ, φ
and c. Only cin0 is related –implicitly– to h(φin

0 ) via Eq. (C.135).

• O(ε2) phase field equation: Picking up the calculation at Eq. (C.94) and substituting f,φφ(φ, c) =
(∆c/α)

[
G(µ− µo0(0±) , µo0(0±)− µF

Eq)P ′′(φ) +G,x(µ− µo0(0±) , µo0(0±)− µF
Eq) ∂φµP

′(φ)
]

and f,φc(φ, c) =

(∆c/α)G,x(µ− µo0(0±) , µo0(0±)− µF
Eq) ∂cµP

′(φ) yields

0 = −D̄σφv̄1 +
∆c

α
G(0, µo0(0±)− µF

Eq)

∫ ∞
−∞

∂φin
0

∂ξ
P ′′(φin

0 )φin
1 dξ (C.138)

+
∆c

α

∫ ∞
−∞

∂φin
0

∂ξ
P ′(φin

0 )
{
∂cµ(φin

0 , c
in
0 )cin1 + ∂φµ(φin

0 , c
in
0 )φin

1

}
dξ

where G,x denotes differentiation with respect to the first argument of G. Equation (C.50) is used
to substitute the expression in the curly brackets of the last term in Eq. (C.138) by µin

1 , the explicit
form of which is still given by Eq. (C.76). Moreover, the first integral in Eq. (C.138) vanishes due
to the symmetry of φin

0 and φin
1 . These simplifications reduce Eq. (C.138) to

D̄σφv̄1 −
v̄0

α
K +

µ̄

α
∆c = 0 (C.139)

which is exactly of the same form as Eq. (C.103), except that K is now defined by

K = ∆c

∫ ∞
−∞

∂φin
0

∂ξ
P ′(φin

0 )

{∫ ξ

0

cs − cin0 (x)

q(φin
0 , c

in
0 )

dx

}
dξ (C.140)

Using Eq. (C.82) and Eq. (C.83) and repeating the steps in section (C.7.5) following Eq. (C.103)
leads to the Gibbs-Thomson condition in Eq. (C.107).

• O(ε2) concentration equation: As with the O(ε) concentration equation, This is unaffected as the
differential equation solves directly for the chemical potential and does not make explicit reference
to the constitutive relation between µ, φ and c. The final form of the flux conservation condition is
still described by Eq. (C.124).
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C.9.3 Changes due to the addition of anti-trapping flux

This section examines how the addition of an anti-trapping flux, introduced in in section (C.9.1), further
alters the asymptotic analysis of the concentration equation, which is now written as

∂c

∂t
= ∇ · (M(φ, c)∇µ(h(φ), c))−∇ · ~Ja (C.141)

where the function h(φ) is indicated to emphasize that µ = f,c(φ, c) is now interpolated using h(φ). The

idea of the anti-trapping flux ~Ja is to correct or ”kick out” any excess solute trapped through the interface
as a results of its finite width Wφ. It thus scales directly with Wφ as well as the rate of interface advance,

controlled by ∂tφ n̂. The remainder of this section examines how ∇· ~Ja in Eq. (C.141) alters the previous
asymptotic analysis.

Re-scaing the diffusion equation as was done in arriving at Eq. (C.35), the dimensionless version of
Eq. (C.141) for the inner concentration field c becomes

ε2
∂c

∂t̄
− εv̄n

∂c

∂ξ
+ ε2σ,t̄

∂c

∂σ
= ∇ξ,σ (q(φ, c)∇ξ,σµ)−

W 2
φ

DL

[
∇ · ~Ja

]
ξ,σ,t̄

(C.142)

where the subscripts ξ, σ, t̄ denote transformation to scaled curvi-linear coordinates (ξ, σ) and time t̄.
(Note that for this subsection, the usual “in” superscript for the fields is dropped to simplify notation).
To modify the equations for the inner concentration field at different orders in ε it therefore suffices to
examine the last term in Eq. (C.142) containing the anti-trapping flux.

The expression for ∇· ~Ja is written with respect to (ξ, σ) with the aid of Eq. (B.17), where Eq. (B.18)
is used to write −∇φ/|∇φ| and Eq. (C.8) is used to write ∂/∂t in curvi-linear coordinates as

∂

∂t̄
=

v2
s

DL

∂

∂t̄
− vs
Wφ

v̄
∂

∂ξ
+

v2
s

DL
σt̄

∂

∂σ
(C.143)

(where it is recalled that t̄ → t/DK/v
2
s). Substituting these expressions into Eq. (B.17) gives, after a

little straightforward –and boring– algebra, an expression for the last term in Eq. (C.142). Retaining
only terms up to order O(ε2), as has been done throughout the asymptotic analysis, leads to

−
W 2
φ

DL

[
∇ · ~Ja

]
ξ,σ

= ε
∂

∂ξ

(
a(φ)Uv̄n

∂φ

∂ξ

)
− ε2

{
∂

∂ξ

(
a(φ)U

∂φ

∂t̄

)
+

∂

∂ξ

(
a(φ)U∂σ

∂φ

∂σ

)
− κ̄a(φ)Uv̄n

∂φ

∂ξ

}
(C.144)

It is seen that Eq. (C.144) explicitly modifies only the O(ε) and O(ε2) equations of the inner concen-
tration expansion. Substituting the inner expansions of φ and c given by Eqs. (C.16) into Eq. (C.144),
expanding a(φ) and U(φ, c) and collecting the O(ε) terms modifies Eq. (C.73) to

O(ε) :
∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

1

∂ξ

)
= −v̄0

∂cin0
∂ξ
− ∂

∂ξ

(
a(φin

0 )U(φin
0 , c

in
0 )v̄0

∂φin
0

∂ξ

)
(C.145)

Similarly collecting the O(ε2) terms modifies Eq. (C.109) to

O(ε2) :
∂

∂ξ

(
q(φin

0 , c
in
0 )
∂µin

2

∂ξ

)
= −v̄1

∂cin0
∂ξ
− v̄0

∂cin1
∂ξ
− κ̄q(φin

0 , c
in
0 )
∂µin

1

∂ξ
− q(φin

0 , c
in
0 )

∂2µin
0

∂σ2
(C.146)
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− ∂

∂ξ

(
q,φ(φin

0 , c
in
0 )φin

1

∂µin
1

∂ξ

)
− ∂

∂ξ

(
q,c(φ

in
0 , c

in
0 )cin1

∂µin
1

∂ξ

)
− κ̄a(φin

0 )U(φin
0 , c

in
0 )v̄0

∂φin
0

∂ξ
− ∂

∂ξ

(
a(φin

0 )U(φin
0 , c

in
0 )v̄0

∂φin
1

∂ξ

)
− ∂

∂ξ

([
a(φin

0 )U(φin
0 , c

in
0 )v̄1 + a(φin

0 )v̄0 δU1 + a′(φin
0 )U(φin

0 , c
in
0 )v̄0φ

in
1

] ∂φin
0

∂ξ

)
where δU1 ≡ U,φ(φin

0 , c
in
0 )φin

1 + U,c(φ
in
0 , c

in
0 )cin1 , a′(φ) ≡ ∂φa(φ) and it is recalled that that φin

0 and cin0 do
not depend explicitly on σ and t̄. It is seen that only the O(ε) and O(ε2) concentration equations are
potentially affected by the anti-trapping flux.

C.9.4 Analysis of modified O(ε) inner diffusion equation

Integrating Eq. (C.145) once gives

q(φin
0 , c

in
0 )
∂µin

1

∂ξ
= −v̄0c

in
0 (ξ)− a(φin

0 )U(φin
0 , c

in
0 )v̄0

∂φin
0

∂ξ
+A(s) (C.147)

Applying, as before, the boundary condition q(φin
0 , c

in
0 )→ q−1 = 0 and ∂φin

0 = 0 as ξ → −∞, gives

µin
1 = −v̄0

∫ ξ

0

[
cin0 (x)− cs

]
q(φin

0 , c
in
0 )

dx− v̄0

∫ ξ

0

U(φin
0 , c

in
0 )a(φin

0 )

q(φin
0 , c

in
0 )

∂φin
0

∂ξ
dx+ µ̄ (C.148)

Re-tracing the steps of section (C.7.4) again will lead to exactly the same form of the O(ε) flux conser-
vation condition given by Eqs. (C.87) or (C.88). However, the chemical potential jump at the interface
given by Eq. (C.85) is now modified to

µo1(0+)− µo1(0−) =
(
F+ −F−

)
v̄0 (C.149)

where

F+ = F+ −
∫ ∞

0

U(φin
0 , c

in
0 )a(φin

0 )

q(φin
0 , c

in
0 )

∂φin
0

∂ξ
dx

F− = F− +

∫ 0

−∞

U(φin
0 , c

in
0 )a(φin

0 )

q(φin
0 , c

in
0 )

∂φin
0

∂ξ
dx (C.150)

where F+ and F− are given by the expression in Eqs. (C.84). It is recalled that the lowest order
concentration field cin0 (ξ) is modified by h(φin

0 ) as discussed in the previous section.

C.9.5 Analysis of modified O(ε2) inner phase field equation

It was noted in section (C.7.5) that Eq. (C.76) is used to eliminate µin
1 in Eq. (C.102). This lead to

Eq. (C.103), where K given by Eq. (C.104). Similarly retracing the steps of the O(ε2) phase field equation
analysis of section (C.9.2) with the explicit form of µin

1 given by Eq. (C.148) leads to the follwoing modified
definition of K,

K = ∆c

∫ ∞
−∞

∂φin
0

∂ξ
P ′(φin

0 )

{∫ ξ

0

cs − cin0 (x)

q(φin
0 , c

in
0 )

dx− a(φin
0 )U(φin

0 , c
in
0 )

q(φin
0 , c

in
0 )

∂φin
0

∂ξ

}
dξ, (C.151)
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which is like Eq. (C.140) modified by the anti-trapping flux. This definition of K and F± → F± replace
their previous versions in Eq. (C.107).

C.9.6 Analysis of modified O(ε2) inner diffusion equation

Proceeding analogously to section (C.7.6), the expression in Eq. (C.147)) is substituted into the third
term on the right hand side of Eq. (C.146) and the result is integrated once, yielding

q(φin
0 , c

in
0 )
∂µin

2

∂ξ
=−v̄1c

in
0 (ξ)− v̄0c

in
1 (ξ) + κ̄v̄0

∫ ξ

0

[
cin0 (ξ)− cs

]
dx+ κ̄v̄0

∫ ξ

0

a(φin
0 )U(φin

0 , c
in
0 )
∂φin

0

∂ξ
dx

−∂
2µin

0

∂σ2

∫ ξ

0

q(φin
0 , c

in
0 )dx−

{
q,φ(φin

0 , c
in
0 )φin

1 + q,c(φ
in
0 , c

in
0 )cin1

} ∂µin
1

∂ξ
− a(φin

0 )U(φin
0 , c

in
0 )v̄0

∂φin
1

∂ξ

−
{
a(φin

0 )v̄0δU1 + a′(φin
0 )U(φin

0 , c
in
0 )v̄0φ

in
1 + a(φin

0 )U(φin
0 , c

in
0 )v̄1

} ∂φin
0

∂ξ

−κ̄v̄0

∫ ξ

0

a(φin
0 )U(φin

0 , c
in
0 )
∂φin

0

∂ξ
dx+B(σ) (C.152)

It is noted that the fourth and second to last terms on the right hand side of Eq. (C.152) exactly cancel.
As in section (C.7.6) the O(ε2) flux conservation condition is obtaining by examining Eq. (C.152) in
the limits ξ → ±∞. In those limits, both the large bracketed term multiplying ∂ξφ

in
0 (ξ) and the term

multiplying ∂ξφ
in
1 (ξ) vanish. As a result, Eq. (C.152) reduces to Eq. (C.111) in the limit ξ → −∞ and

Eq. (C.112) in the limit ξ →∞. Therefore, all manipulation encountered in section (C.7.6) follow in the
same way and anti-trapping does not enter explicitly into the O(ε2) flux condition. The one difference is
that the ∆F expression that appears after Eq. (C.119) is now replaced by ∆F ≡ F+ − F−, where the
modified F+ and F− are defined in Eqs. (C.150). The corrections ∆H and ∆J remain the same as in
section (C.7.6).

To summarize, the introduction of the interpolation function h(φ), the anti-trapping function a(φ)
and the freedome to choose q(φ, c) (within limits) provide three degrees of freedom with which ∆F , ∆H
and ∆J can be simultaneously eliminated from the effective sharp interface model emulated by the phase
field field model in Eqs. (C.2). In this approach, the usual diffusion equation is swapped for Eq. (C.141),

with ~Ja given by Eq. (C.133) and the interpolation function g(φ) appearing in µ (via f̄mix
AB ) is swapped

for h(φ).
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[156] R. R. Mohanty and Y. Sohn. Journal of Phase Equilibria and Diffusion, 27:676–683, 2006.

[157] W. W. Mullins and R. F. Sekerka. J. Appl. Phys., 34:323, 1963.

[158] W. W. Mullins and R. F. Sekerka. J. Appl. Phys., 35:444, 1964.

[159] A. H. Nayfeh. Introduction to pertubation Techniques. John Wiley and Sons, 1981.

[160] B. Nestler and A. A. Wheeler. Physica D, 138:114, 2000.

[161] M. Ode, S. G. Kim, and T. Suzuki. ISIJ Inter., 41:1076–1082, 2001.

[162] M. Ohno and K. Matsuura. Phys. Rev. E, 79:031603, 2009.

[163] T. Ohta, D. Jasnow, and K. Kawasaki. Phys. Rev. Lett, 49:1223, 1982.

[164] Y. Oono and S. Puri. Phys. Rev. E, 38:434, 1988.

255



[165] S. G. Pavlik and R. F. Sekerka. Physica A, 268:283, 1999.

[166] S. G. Pavlik and R. F. Sekerka. Physica A, 277:415, 2000.

[167] Y. Pomeau and M. Ben Amar. Solids far from equilibrium, page 365. edited by by C. Godreche,
(Cambridge Press), 1991.

[168] D. A. Porter and K. E. Easterling. Phase Transformations in Metals and Alloys 2nd ed. Stanley
Thornes Ltd, 2001.

[169] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes. Cambridge
University Press, 1992.

[170] N. Provatas, T. Ala-Nissila, M. Grant, K. R. Elder, and L. Piche. J. Stat. Phys., 81(3/4):737,
1995.

[171] N. Provatas, J. Dantzig, and N. Goldenfeld. Phys. Rev. Lett., 80:3308, 1998.

[172] N. Provatas, J. Dantzig, and N. Goldenfeld. J. Comp. Phys., 148:265, 1999.

[173] N. Provatas, J. Dantzig, N. Goldenfeld, J. C. Lacombe, A. Lupulescu, M. B. Koss, and M. E.
Glicksman. Phys. Rev. Lett., 82:4496, 1999.

[174] N. Provatas, M. Greenwood, B. Athreya, N. Goldenfeld, and J. Dantzig. International Journal of
Modern Physics B, 19:4525, 2005.

[175] N. Provatas, Q. Wang, M. Haataja, and M. Grant. Phys. Rev. Lett., 91, 2003.

[176] Nikolas Provatas. Thermodynamics notes of the derivation of the Gibb’s Thomson Condition,
pages 14–15. Nikolas Provatas, 2007.

[177] T V Ramakrishan and M Yussouff. First-principles order-parameter theory of freezing. Phy. Rev.
B, 19:2775, 1979.

[178] T. V. Ramakrishnan and M. Yussouff. Phys. Rev. B, 19:2775, 1979.

[179] J. A. P. Ramos, E. Granato, C. V. Achim, S. C. Ying, K. R. Elder, and T. Ala-Nissila. Ther-
mal fluctuations and phase diagrams of the phase-field crystal model with pinning. Phys. Rev. E,
78:031109, 2008.

[180] J. A.. P. Ramos, E. Granato, S. C. Yinn, C. V. Achim, K. R. Elder, and T. Ala-Nissila. Phys.
Rev. E, 81:011121, 2010.

[181] W. T Read and W. Shockley. Dislocation models of crystal grain boundaries. Phys. Rev., 78:275,
1950.

[182] H. Reiss. Methods of Thermodynamics. Dover Publishig, 1996.

[183] M. Sabouri-Ghomi, N. Provatas, and M. Grant. Phys Rev Lett, 86:5084, 2001.

[184] Y. Saito. Statistical Physics of Crystal Growth. World Scientific Publishing Co. PTe. Ltd., 1996.

[185] K. Sakai. J. Crsyt. growth, 237–239:144–148, 2002.

256



[186] A. Schmidt. J. Comp. Phys., 125:293, 1996.

[187] J. P. Simmons, C. Shen, and Y. Wang. Scr Mater., 43:935, 2000.

[188] Y. Singh. Physics Reports, 207, No 6:351, 1991.

[189] P. Stefanovic, M. Haataja, and N.Provatas. Phys. Rev. Lett., 96:225504, 2006.

[190] I. Steinbach. Modeling Simul. Mater. Sci. Eng., 17:073001, 2009.

[191] I. Steinbach and M. Apel. Phys. D – Nonlinear Phenomena, 217:153, 2006.

[192] I. Steinbach and F. Pezzolla. Physica D, 134:385, 1999.

[193] I. Steinbach, F. Pezzolla, B. Nestler M. Seebelberg, R. Prieler, and G. J. Schmitz. Physica D,
94:135, 1996.

[194] J Swift and P C Hohenberg. Hydrodynamic fluctuations at the convective instability. Phys. Rev.
A, 15:319–328, 1977.

[195] C. Tong, M. Greenwood, and N. Provatas. Phys. Rev. B, 77:064112, 2008.

[196] R. Trivedi and W. Kurz. Acta metall. mater., 42:15, 1994.

[197] R. Trivedi and K. Somboonsuk. Mat. Sci. and Eng., 65:65, 1984.

[198] B. Utter, R. Ragnarsson, and E. Bodenschatz. Phys. Rev. Lett., 86:4604, 2001.

[199] S-L. Wang and R. F. Sekerka. Phys. Rev. E, 53:3760, 1996.

[200] S-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun, and G. B.
McFadden. Physica D, 69:189, 1993.

[201] Y Wang and A Khachaturyan. Scr. Metall. Mater., page 1425, 1994.

[202] Y Wang and A Khachaturyan. Acta. Mater., page 1837, 1995.

[203] Y. Wang and A. Khachaturyan. Acta Mater., page 759, 1997.

[204] J. A. Warren and W. J. Boettinger. Acta Metall. Mater. A, 43:689, 1995.

[205] J. A. Warren, W. C. Carter, and R. Kobayashi. Physica (Amsterdam), 261A:159, 1998.

[206] J. A. Warren, R. Kobayashi, A. E. Lobkovsky, and W. C. Carter. Acta Materialia, 51:6035, 2003.

[207] J. A. Warren and J. S. Langer. Phys. Rev. A, 42(6):3518, 1990.

[208] J. A. Warren and J. S. Langer. Phys. Rev. E, 74(4):2702, 1993.

[209] A. A. Wheeler, W. J., Boettinger, and G. B. McFadden. Phys. Rev. A, 45:7424, 1992.

[210] A. A. Wheeler, G. B. McFadden, and W.J. Boettinger. Proc. Royal Soc. London A, 452:495, 1996.

[211] K. Wu and Y. Wang Y. A. Chang and. Scripta Mater., 50:1145–1150, 2004.

257



[212] K. A. Wu, A.Karma ad J. Hoyt, and M. Asta. Phys. Rev. B., 73:094101, 2006.

[213] K. A. Wu and A. Karma. Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Phys.
Rev. B, 76:184107, 2007.

[214] K. A. Wu and P. W. Voorhees. Phys. Rev. B, 80:124408, 2009.

[215] X.Tong, C.Beckermann, A.Karma, and Q.Li. Phys Rev E, 63:1063, 2001.

[216] D. H. Yeon, P. R. Cha, J. H. Kim, M. Grant, and J. K. Yoon. Modelling Simul. Mater. Sci. Eng.,
13:299, 2005.

[217] D-H Yeon, Z-F Huang, K. R. Elder, and K. Thornton. Phil. Mag., 90:237, 2010.

[218] S Yip. The strongest size. Nature, 391:532, 1998.

[219] Y.Lu, C.Beckermann, and A.Karma. Proceedings of IMECE2002, , 2002.

[220] Y. S. Yoo, D. .Y. Yoon, and M. .F. Henry. Materials Mater., 1:47, 1995.

[221] J. Z. Zhu, T. Wang, A. J. Ardell, S. H. Zhou, Z. K. Liu, and L. Q. Chen. Acta. Materialia,
52:2837, 2004.

[222] J. Z. Zhu, T. Wang, A. J. Ardell, S. H. Zhou, Z. K. Lui, and L. Q. Chen. Acta Materialia,
52:2837, 2004.

[223] J. Z. Zhu, T. Wang, S. H. Zhou, Z. K. Lui, and L. Q. Chen. Acta Materialia, 52:833, 2004.

258


	Preface
	Introduction
	The Role of Microstructure Materials Science
	Free Boundary Problems and Microstructure Evolution
	Continuum Versus Sharp-Interface Models

	Mean Field Theory of Phase Transformations
	Simple Lattice Models
	Phase separation in a binary mixture
	Ising Model of Magnetism

	Introduction to Landau Theory
	Order parameters and phase transformations
	The Landau free energy functional
	Phase transitions with a symmetric phase diagram
	Phase transitions with a non-symmetric phase diagram
	First order transition without a critical point


	Spatial Variations and Interfaces
	The Ginzburg-Landau Free Energy Functional 
	Equilibrium Interfaces and Surface Tension

	Non-Equilibrium Dynamics
	Driving Forces and Fluxes
	The Diffusion Equation
	Dynamics of Conserved Order Parameters: Model B 
	Dynamics of Non-Conserved Order Parameters: Model A
	Generic Features of Models A and B
	Equilibrium Fluctuations of Order Parameters
	Non-conserved order parameters
	Conserved order parameters

	Stability and the Formation of Second Phases
	Non-conserved order parameters
	Conserved order parameters

	 Interface Dynamics of Phase Field Models (Optional) 
	Model A
	Model B

	Numerical Methods
	Fortran 90 codes accompanying this book
	Model A
	Model B


	Introduction to Phase Field Modeling: Solidification of Pure Materials
	Solid order parameters
	Free Energy Functional for Solidification
	Single Order Parameter Theory of Solidification
	Solidification Dynamics
	Isothermal solidification: model A dynamics
	Anisotropy
	Non-isothermal solidification dynamics: Model C

	Sharp and Thin Interface Limits of Phase Field Models
	Case Study: Thin interface analysis of Equations (5.31)
	Recasting phase field equations
	Effective sharp interface model

	Numerical Simulations of Model C
	Discrete equations
	Boundary conditions
	Scaling and convergence of model

	Properties of Dendritic Solidification in Pure Materials
	Microscopic solvability theory
	Phase field predictions of dendrite operating states
	Further study of dendritic growth


	Phase Field Modeling of Solidification in Binary Alloys
	Alloys and Phase Diagrams: A Quick Review
	Microstructure Evolution in Alloys
	Sharp interface model of solidification in one dimension
	Extension of sharp interface model to higher dimensions

	Phase Field Models of Binary Alloys
	Free Energy Functional
	General form of f(,c,T)
	f(,c,T) for isomorphous alloys
	f(,c,T) for eutectic alloys
	f(,c,T) for dilute binary alloys

	Equilibrium Properties of Free Energy Functional
	An example of bulk equilibrium using a multi-state model
	Calculation of interface energy

	Phase Field Dynamics
	Thin Interface Limits of Alloy Phase Field Models
	Case Study: Analysis of a Dilute Binary Alloy Model
	Interpolation functions for f(,c)
	Equilibrium Phase Diagram
	Equilibrium co and o profiles
	Dynamical equations
	Thin interface properties of dilute alloy model
	Non-variational verision of model (optional)
	Effective sharp interface parameters of non-variational model (optional)

	Numerical Simulations of Dilute Alloy Phase Field Model
	Discrete equations
	Convergence properties of model

	Other Alloy Phase Field Formulations
	Introducing fictitious, or auxiliary, concentration fields
	Formulation of phase field equations
	Steady state properties of model and surface tension
	Thin interface limit
	Numerical determination of Cs and CL

	Properties of Dendritic Solidification in Binary Alloys
	Geometric models of directional solidification
	Spacing selection theories of directional solidification
	Phase field simulations of directional solidification
	Role of Surface Tension Anisotropy


	Multiple Phase Fields and Order Parameters
	 Multi-Order Parameter Models
	Pure materials
	Alloys
	Strain effects on precipitation
	Anisotropy

	Multi-Phase Field Models
	Thermodynamics
	Dynamics

	Orientational Order Parameter for Polycrystalline modeling
	Pure materials
	Alloys


	Phase Field Crystal Modeling of Pure Materials
	Periodic Systems and Hooke's Law
	A Classic Periodic System: The Swift-Hohenberg Model
	Static Analysis of the SH Model
	Dynamical analysis of the SH model

	The Phase Field Crystal (PFC) Model
	Equilibrium Properties in a One Mode Approximation
	Three dimensions: BCC lattice
	Two dimensions: triangular lattice (rods in 3D)
	One dimension: planes
	Elastic Constants of PFC Model

	PFC Dynamics
	Vacancy Diffusion

	Multi-scale Modeling: Amplitude Expansions (Optional)
	One dimension
	Two Dimensions
	Three Dimensions
	Rotational Invariance

	Parameter fitting

	Phase Field Crystal Modeling of Binary Alloys
	A Two-Component PFC Model For Alloys
	Constant density approximation: liquid
	Constant concentration approximation: solid

	Simplification of Binary Model
	Equilibrium Properties: Two dimensions
	Equilibrium Properties: Three dimensions (BCC)

	PFC Alloy Dynamics
	Applications of PFC models

	Basic Numerical Algorithms for Phase Field Equations
	Explicit Finite Difference Method for Model A
	Spatial derivatives
	Time marching

	Explicit Finite Volume Method for Model B
	Discrete volume integration
	Time and space discretization

	Stability of Explicit Time Marching Schemes
	 Linear stability of explicit methods
	Non-linear instability criterion for t
	Non-linear instability criterion for x
	A word on implicit methods

	Semi-Implicit Fourier Space Method
	Finite Element Method
	 The Diffusion Equation in 1D
	The 2D Poisson Equation


	Miscellaneous Derivations
	Structure Factor: Section (4.6.1)
	Transformations from Cartesian to Curvilinear Co-ordinates: Section (C.2) 
	Newton's Method for Non-Linear Algebraic Equations: Section (6.9.5)

	Thin-Interface Limit of a Binary Alloy Phase Field Model
	Phase Field Model
	Curvi-linear Coordinate Transformations
	Length and Time Scales
	Matching Conditions Between Outer and Inner Solutions
	Outer Equations Satisfied by Phase Field Model
	Inner Expansion of Phase Field Equations
	Inner Expansion of phase field equation C.37 at different orders
	Inner expansion of concentration equation C.38 at different orders
	Inner Chemical potential expansion

	Analysis of Inner Equations and Matching to Outer Fields 
	O(1) phase field equation (C.40)
	O(1) diffusion equation (C.43)
	O() phase field equation (C.41)
	O() diffusion equation (C.44)
	O(2) phase field equation (C.42)
	O(2) diffusion equation (C.45)

	Summary of Results of Appendix Sections (C.2)-(C.7)
	Effective sharp Interface limit of Eqs. (C.2)
	Interpretation of thin interface limit correction terms

	Elimination of Thin Interface Correction Terms
	Modifying the phase field equations
	Changes due to the altered form of bulk chemical potential
	Changes due to the addition of anti-trapping flux
	Analysis of modified O() inner diffusion equation
	Analysis of modified O(2) inner phase field equation
	Analysis of modified O(2) inner diffusion equation



